β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis

The output characteristics of β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure modulation‐doped field‐effect transistors (MODFETs) with an ultrathin spacer layer and a back‐barrier layer are fitted with experimental measurements using a Silvaco ATLAS technology computer‐aided design (TCAD) simulati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2022-06, Vol.219 (12), p.n/a
Hauptverfasser: Atmaca, Gökhan, Cha, Ho-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 219
creator Atmaca, Gökhan
Cha, Ho-Young
description The output characteristics of β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure modulation‐doped field‐effect transistors (MODFETs) with an ultrathin spacer layer and a back‐barrier layer are fitted with experimental measurements using a Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment, and the calibration of the physical model and material parameters is realized. The effects of spacer layer thickness, barrier layer thickness, Si‐δ doping density, and insertion of a β‐Ga2O3 cap layer on the transfer and transconductance characteristics are examined. It is found that a β‐Ga2O3 cap layer on the top of the heterostructure can increase the sheet carrier density in the heterostructure. A breakdown analysis is also carried out to reveal the effects of several layers on the off‐state characteristics. A range of channel layer thicknesses from 15 to 25 nm is found to be the optimum range to avoid a high off‐state leakage current and earlier breakdown voltage. The output, transfer, transconductance, and breakdown characteristics β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure MODFETs with an ultrathin spacer layer and a back‐barrier layer are investigated through Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment. Various structural design parameters were carefully investigated in this comprehensive study.
doi_str_mv 10.1002/pssa.202100732
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2676690927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676690927</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1482-1890595a2aa8df0b76de85109419eba0cc490a096a72d90370cf9eac4c9edfa93</originalsourceid><addsrcrecordid>eNo9UctOwzAQjBBIPK-cLXGBQ9u1kyYxt9BCi1RUpMI5WpwtdUmTYCeg3PgEvoUbP8FH8CWYVy-7O5rd2ZHG8w45dDmA6FXWYleAcCDyxYa3w-NQdEKfy831DLDt7Vq7BAj6QcR3vPePt8-X1-MkdyLRCKEb-ydi6vdG6CobUl6j44dlRRkbU02mtLVpVN0YYlfT4cX5jWXPul4wLNhtXhusF7pgswoVGTbB1lUsMobsDNWDUzpDY_Q_dcoSNihXlaEFFVY_EbshtSjKvLxvf4jGPXRHic7c-yFZfV-wpMC8tdrue1tzzC0d_PU979a5GYw7k-nocpBMOhUPYtHhsYS-7KNAjLM53EVhRnGfgwy4pDsEpQIJCDLESGQS_AjUXBKqQEnK5ij9Pe_oV7cy5WNDtk6XZWOcCZuKMApDCVJEbkv-bj3rnNq0MnqFpk05pN_ZpN_ZpOts0uvZLFkj_wu-nomX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676690927</pqid></control><display><type>article</type><title>β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis</title><source>Access via Wiley Online Library</source><creator>Atmaca, Gökhan ; Cha, Ho-Young</creator><creatorcontrib>Atmaca, Gökhan ; Cha, Ho-Young</creatorcontrib><description>The output characteristics of β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure modulation‐doped field‐effect transistors (MODFETs) with an ultrathin spacer layer and a back‐barrier layer are fitted with experimental measurements using a Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment, and the calibration of the physical model and material parameters is realized. The effects of spacer layer thickness, barrier layer thickness, Si‐δ doping density, and insertion of a β‐Ga2O3 cap layer on the transfer and transconductance characteristics are examined. It is found that a β‐Ga2O3 cap layer on the top of the heterostructure can increase the sheet carrier density in the heterostructure. A breakdown analysis is also carried out to reveal the effects of several layers on the off‐state characteristics. A range of channel layer thicknesses from 15 to 25 nm is found to be the optimum range to avoid a high off‐state leakage current and earlier breakdown voltage. The output, transfer, transconductance, and breakdown characteristics β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure MODFETs with an ultrathin spacer layer and a back‐barrier layer are investigated through Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment. Various structural design parameters were carefully investigated in this comprehensive study.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202100732</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barrier layers ; Breakdown ; Carrier density ; delta-doped β-Ga2O3 heterostructures ; Design analysis ; Ga2O3 ; Gallium oxides ; Heterostructures ; Leakage current ; MODFET ; MODFETs ; Thickness ; Transconductance ; Transistors ; β-2DEG</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-06, Vol.219 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1363-3152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202100732$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202100732$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Atmaca, Gökhan</creatorcontrib><creatorcontrib>Cha, Ho-Young</creatorcontrib><title>β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis</title><title>Physica status solidi. A, Applications and materials science</title><description>The output characteristics of β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure modulation‐doped field‐effect transistors (MODFETs) with an ultrathin spacer layer and a back‐barrier layer are fitted with experimental measurements using a Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment, and the calibration of the physical model and material parameters is realized. The effects of spacer layer thickness, barrier layer thickness, Si‐δ doping density, and insertion of a β‐Ga2O3 cap layer on the transfer and transconductance characteristics are examined. It is found that a β‐Ga2O3 cap layer on the top of the heterostructure can increase the sheet carrier density in the heterostructure. A breakdown analysis is also carried out to reveal the effects of several layers on the off‐state characteristics. A range of channel layer thicknesses from 15 to 25 nm is found to be the optimum range to avoid a high off‐state leakage current and earlier breakdown voltage. The output, transfer, transconductance, and breakdown characteristics β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure MODFETs with an ultrathin spacer layer and a back‐barrier layer are investigated through Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment. Various structural design parameters were carefully investigated in this comprehensive study.</description><subject>Barrier layers</subject><subject>Breakdown</subject><subject>Carrier density</subject><subject>delta-doped β-Ga2O3 heterostructures</subject><subject>Design analysis</subject><subject>Ga2O3</subject><subject>Gallium oxides</subject><subject>Heterostructures</subject><subject>Leakage current</subject><subject>MODFET</subject><subject>MODFETs</subject><subject>Thickness</subject><subject>Transconductance</subject><subject>Transistors</subject><subject>β-2DEG</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UctOwzAQjBBIPK-cLXGBQ9u1kyYxt9BCi1RUpMI5WpwtdUmTYCeg3PgEvoUbP8FH8CWYVy-7O5rd2ZHG8w45dDmA6FXWYleAcCDyxYa3w-NQdEKfy831DLDt7Vq7BAj6QcR3vPePt8-X1-MkdyLRCKEb-ydi6vdG6CobUl6j44dlRRkbU02mtLVpVN0YYlfT4cX5jWXPul4wLNhtXhusF7pgswoVGTbB1lUsMobsDNWDUzpDY_Q_dcoSNihXlaEFFVY_EbshtSjKvLxvf4jGPXRHic7c-yFZfV-wpMC8tdrue1tzzC0d_PU979a5GYw7k-nocpBMOhUPYtHhsYS-7KNAjLM53EVhRnGfgwy4pDsEpQIJCDLESGQS_AjUXBKqQEnK5ij9Pe_oV7cy5WNDtk6XZWOcCZuKMApDCVJEbkv-bj3rnNq0MnqFpk05pN_ZpN_ZpOts0uvZLFkj_wu-nomX</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Atmaca, Gökhan</creator><creator>Cha, Ho-Young</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1363-3152</orcidid></search><sort><creationdate>202206</creationdate><title>β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis</title><author>Atmaca, Gökhan ; Cha, Ho-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1482-1890595a2aa8df0b76de85109419eba0cc490a096a72d90370cf9eac4c9edfa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barrier layers</topic><topic>Breakdown</topic><topic>Carrier density</topic><topic>delta-doped β-Ga2O3 heterostructures</topic><topic>Design analysis</topic><topic>Ga2O3</topic><topic>Gallium oxides</topic><topic>Heterostructures</topic><topic>Leakage current</topic><topic>MODFET</topic><topic>MODFETs</topic><topic>Thickness</topic><topic>Transconductance</topic><topic>Transistors</topic><topic>β-2DEG</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atmaca, Gökhan</creatorcontrib><creatorcontrib>Cha, Ho-Young</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atmaca, Gökhan</au><au>Cha, Ho-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-06</date><risdate>2022</risdate><volume>219</volume><issue>12</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>The output characteristics of β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure modulation‐doped field‐effect transistors (MODFETs) with an ultrathin spacer layer and a back‐barrier layer are fitted with experimental measurements using a Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment, and the calibration of the physical model and material parameters is realized. The effects of spacer layer thickness, barrier layer thickness, Si‐δ doping density, and insertion of a β‐Ga2O3 cap layer on the transfer and transconductance characteristics are examined. It is found that a β‐Ga2O3 cap layer on the top of the heterostructure can increase the sheet carrier density in the heterostructure. A breakdown analysis is also carried out to reveal the effects of several layers on the off‐state characteristics. A range of channel layer thicknesses from 15 to 25 nm is found to be the optimum range to avoid a high off‐state leakage current and earlier breakdown voltage. The output, transfer, transconductance, and breakdown characteristics β‐(Al0.17Ga0.83)2O3/β‐Ga2O3‐based heterostructure MODFETs with an ultrathin spacer layer and a back‐barrier layer are investigated through Silvaco ATLAS technology computer‐aided design (TCAD) simulation environment. Various structural design parameters were carefully investigated in this comprehensive study.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202100732</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1363-3152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2022-06, Vol.219 (12), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2676690927
source Access via Wiley Online Library
subjects Barrier layers
Breakdown
Carrier density
delta-doped β-Ga2O3 heterostructures
Design analysis
Ga2O3
Gallium oxides
Heterostructures
Leakage current
MODFET
MODFETs
Thickness
Transconductance
Transistors
β-2DEG
title β‐(Al0.17Ga0.83)2O3/Ga2O3 Delta‐Doped Heterostructure MODFETs with an Ultrathin Spacer Layer and a Back‐Barrier Layer: A Comprehensive Technology Computer‐Aided Design Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2%E2%80%90(Al0.17Ga0.83)2O3/Ga2O3%20Delta%E2%80%90Doped%20Heterostructure%20MODFETs%20with%20an%20Ultrathin%20Spacer%20Layer%20and%20a%20Back%E2%80%90Barrier%20Layer:%20A%20Comprehensive%20Technology%20Computer%E2%80%90Aided%20Design%20Analysis&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Atmaca,%20G%C3%B6khan&rft.date=2022-06&rft.volume=219&rft.issue=12&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202100732&rft_dat=%3Cproquest_wiley%3E2676690927%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676690927&rft_id=info:pmid/&rfr_iscdi=true