Turbulent transport regimes in the tokamak boundary and operational limits
Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of e...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-06, Vol.29 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Giacomin, M. Ricci, P. |
description | Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations. |
doi_str_mv | 10.1063/5.0090541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676667973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676667973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdl87lGKnxS8VPAWsu1E0-5u1iQr-O9dbcG7pxmYh2HmReickhklkl2LGSEVEZweoAkluiqUVPzwp1ekkJK_HqOTlDaEEC6FnqCn5RDroYEu4xxtl_oQM47w5ltI2Hc4vwPOYWtbu8V1GLq1jV_Ydmsceog2-9DZBje-9TmdoiNnmwRn-zpFL3e3y_lDsXi-f5zfLIoVk2UuHAirOGgAoBQqWla1qmsrGQgHlGsOjlBQ0mld1la5ccCk5kpoTriTik3RxW5vH8PHACmbTRjieEcypVRSSlUpNqrLnVrFkFIEZ_ro2_F6Q4n5icoIs49qtFc7m1Y-_z71P_wZ4h80_dqxb2O8d70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676667973</pqid></control><display><type>article</type><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Giacomin, M. ; Ricci, P.</creator><creatorcontrib>Giacomin, M. ; Ricci, P.</creatorcontrib><description>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0090541</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ballooning modes ; Density ; Fluid flow ; Parameter identification ; Plasma physics ; Scaling laws ; Tokamak devices ; Turbulence</subject><ispartof>Physics of plasmas, 2022-06, Vol.29 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</citedby><cites>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</cites><orcidid>0000-0003-3117-2238 ; 0000-0003-2821-2008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0090541$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Giacomin, M.</creatorcontrib><creatorcontrib>Ricci, P.</creatorcontrib><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><title>Physics of plasmas</title><description>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</description><subject>Ballooning modes</subject><subject>Density</subject><subject>Fluid flow</subject><subject>Parameter identification</subject><subject>Plasma physics</subject><subject>Scaling laws</subject><subject>Tokamak devices</subject><subject>Turbulence</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdl87lGKnxS8VPAWsu1E0-5u1iQr-O9dbcG7pxmYh2HmReickhklkl2LGSEVEZweoAkluiqUVPzwp1ekkJK_HqOTlDaEEC6FnqCn5RDroYEu4xxtl_oQM47w5ltI2Hc4vwPOYWtbu8V1GLq1jV_Ydmsceog2-9DZBje-9TmdoiNnmwRn-zpFL3e3y_lDsXi-f5zfLIoVk2UuHAirOGgAoBQqWla1qmsrGQgHlGsOjlBQ0mld1la5ccCk5kpoTriTik3RxW5vH8PHACmbTRjieEcypVRSSlUpNqrLnVrFkFIEZ_ro2_F6Q4n5icoIs49qtFc7m1Y-_z71P_wZ4h80_dqxb2O8d70</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Giacomin, M.</creator><creator>Ricci, P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3117-2238</orcidid><orcidid>https://orcid.org/0000-0003-2821-2008</orcidid></search><sort><creationdate>202206</creationdate><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><author>Giacomin, M. ; Ricci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ballooning modes</topic><topic>Density</topic><topic>Fluid flow</topic><topic>Parameter identification</topic><topic>Plasma physics</topic><topic>Scaling laws</topic><topic>Tokamak devices</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomin, M.</creatorcontrib><creatorcontrib>Ricci, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomin, M.</au><au>Ricci, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent transport regimes in the tokamak boundary and operational limits</atitle><jtitle>Physics of plasmas</jtitle><date>2022-06</date><risdate>2022</risdate><volume>29</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090541</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3117-2238</orcidid><orcidid>https://orcid.org/0000-0003-2821-2008</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-06, Vol.29 (6) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_2676667973 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Ballooning modes Density Fluid flow Parameter identification Plasma physics Scaling laws Tokamak devices Turbulence |
title | Turbulent transport regimes in the tokamak boundary and operational limits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20transport%20regimes%20in%20the%20tokamak%20boundary%20and%20operational%20limits&rft.jtitle=Physics%20of%20plasmas&rft.au=Giacomin,%20M.&rft.date=2022-06&rft.volume=29&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0090541&rft_dat=%3Cproquest_cross%3E2676667973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676667973&rft_id=info:pmid/&rfr_iscdi=true |