Turbulent transport regimes in the tokamak boundary and operational limits

Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2022-06, Vol.29 (6)
Hauptverfasser: Giacomin, M., Ricci, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 29
creator Giacomin, M.
Ricci, P.
description Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.
doi_str_mv 10.1063/5.0090541
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676667973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676667973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdl87lGKnxS8VPAWsu1E0-5u1iQr-O9dbcG7pxmYh2HmReickhklkl2LGSEVEZweoAkluiqUVPzwp1ekkJK_HqOTlDaEEC6FnqCn5RDroYEu4xxtl_oQM47w5ltI2Hc4vwPOYWtbu8V1GLq1jV_Ydmsceog2-9DZBje-9TmdoiNnmwRn-zpFL3e3y_lDsXi-f5zfLIoVk2UuHAirOGgAoBQqWla1qmsrGQgHlGsOjlBQ0mld1la5ccCk5kpoTriTik3RxW5vH8PHACmbTRjieEcypVRSSlUpNqrLnVrFkFIEZ_ro2_F6Q4n5icoIs49qtFc7m1Y-_z71P_wZ4h80_dqxb2O8d70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676667973</pqid></control><display><type>article</type><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Giacomin, M. ; Ricci, P.</creator><creatorcontrib>Giacomin, M. ; Ricci, P.</creatorcontrib><description>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0090541</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Ballooning modes ; Density ; Fluid flow ; Parameter identification ; Plasma physics ; Scaling laws ; Tokamak devices ; Turbulence</subject><ispartof>Physics of plasmas, 2022-06, Vol.29 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</citedby><cites>FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</cites><orcidid>0000-0003-3117-2238 ; 0000-0003-2821-2008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0090541$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Giacomin, M.</creatorcontrib><creatorcontrib>Ricci, P.</creatorcontrib><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><title>Physics of plasmas</title><description>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</description><subject>Ballooning modes</subject><subject>Density</subject><subject>Fluid flow</subject><subject>Parameter identification</subject><subject>Plasma physics</subject><subject>Scaling laws</subject><subject>Tokamak devices</subject><subject>Turbulence</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdl87lGKnxS8VPAWsu1E0-5u1iQr-O9dbcG7pxmYh2HmReickhklkl2LGSEVEZweoAkluiqUVPzwp1ekkJK_HqOTlDaEEC6FnqCn5RDroYEu4xxtl_oQM47w5ltI2Hc4vwPOYWtbu8V1GLq1jV_Ydmsceog2-9DZBje-9TmdoiNnmwRn-zpFL3e3y_lDsXi-f5zfLIoVk2UuHAirOGgAoBQqWla1qmsrGQgHlGsOjlBQ0mld1la5ccCk5kpoTriTik3RxW5vH8PHACmbTRjieEcypVRSSlUpNqrLnVrFkFIEZ_ro2_F6Q4n5icoIs49qtFc7m1Y-_z71P_wZ4h80_dqxb2O8d70</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Giacomin, M.</creator><creator>Ricci, P.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3117-2238</orcidid><orcidid>https://orcid.org/0000-0003-2821-2008</orcidid></search><sort><creationdate>202206</creationdate><title>Turbulent transport regimes in the tokamak boundary and operational limits</title><author>Giacomin, M. ; Ricci, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-fe5a74e8eee11e9129b7bba63e5fe1484ef01e76f882ba7f63e3684758404f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ballooning modes</topic><topic>Density</topic><topic>Fluid flow</topic><topic>Parameter identification</topic><topic>Plasma physics</topic><topic>Scaling laws</topic><topic>Tokamak devices</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomin, M.</creatorcontrib><creatorcontrib>Ricci, P.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomin, M.</au><au>Ricci, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent transport regimes in the tokamak boundary and operational limits</atitle><jtitle>Physics of plasmas</jtitle><date>2022-06</date><risdate>2022</risdate><volume>29</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Two-fluid, three-dimensional, flux-driven, global, electromagnetic turbulence simulations carried out by using the GBS (Global Braginskii Solver) code are used to identify the main parameters controlling turbulent transport in the tokamak boundary and to delineate an electromagnetic phase space of edge turbulence. Four turbulent transport regimes are identified: (i) a regime of fully developed turbulence appearing at intermediate values of collisionality and β, with turbulence driven by resistive ballooning modes, related to the L-mode operation of tokamaks, (ii) a regime of reduced turbulent transport at low collisionality and large heat source, with turbulence driven by drift-waves, related to a high-density H-mode regime, (iii) a regime of extremely large turbulent transport at high collisionality, which is associated with the crossing of the density limit, and (iv) a regime above the ideal ballooning limit at high β, with global modes affecting the dynamics of the entire confined region, which can be associated with the crossing of the β limit. The transition from the reduced to the developed turbulent transport regime is associated here with the H-mode density limit, and an analytical scaling law for maximum edge density achievable in H-mode is obtained. Analogously, analytical scaling laws for the crossing of the L-mode density and β limits are provided and compared to the results of GBS simulations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090541</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3117-2238</orcidid><orcidid>https://orcid.org/0000-0003-2821-2008</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2022-06, Vol.29 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_proquest_journals_2676667973
source AIP Journals Complete; Alma/SFX Local Collection
subjects Ballooning modes
Density
Fluid flow
Parameter identification
Plasma physics
Scaling laws
Tokamak devices
Turbulence
title Turbulent transport regimes in the tokamak boundary and operational limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20transport%20regimes%20in%20the%20tokamak%20boundary%20and%20operational%20limits&rft.jtitle=Physics%20of%20plasmas&rft.au=Giacomin,%20M.&rft.date=2022-06&rft.volume=29&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0090541&rft_dat=%3Cproquest_cross%3E2676667973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676667973&rft_id=info:pmid/&rfr_iscdi=true