Cofinitely essential g-supplemented modules
Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supple-mented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and...
Gespeichert in:
Veröffentlicht in: | Mathematical notes (Miskolci Egyetem (Hungary)) 2022, Vol.23 (1), p.381-387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 1 |
container_start_page | 381 |
container_title | Mathematical notes (Miskolci Egyetem (Hungary)) |
container_volume | 23 |
creator | Nebiyev, Celil Ökten, Hasan Hüseyin |
description | Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supple-mented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented. |
doi_str_mv | 10.18514/MMN.2022.3655 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676619415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676619415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c192t-77f83d83486019cc00542286f00b71e04aa479c3b993fd1dbb635f53ebb385c43</originalsourceid><addsrcrecordid>eNo9kM1LxDAUxIMouKx79VzwKK15-c5RirrCrl70HJo0kS79MmkP-9_bdcW5vBkY3sAPoVvABSgO7GG_fysIJqSggvMLtAKpZE4Y0Mt_j_k12qR0wIs4E5LpFbovh9D0zeTbY-ZT8v3UVG32lad5HFvfLdnXWTfUc-vTDboKVZv85u-u0efz00e5zXfvL6_l4y53oMmUSxkUrRVlSmDQzp3GCFEiYGwleMyqikntqNWahhpqawXlgVNvLVXcMbpGd-e_Yxy-Z58mcxjm2C-ThggpBGgGfGkV55aLQ0rRBzPGpqvi0QA2v0zMwsScmJgTE_oD4VxSSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676619415</pqid></control><display><type>article</type><title>Cofinitely essential g-supplemented modules</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nebiyev, Celil ; Ökten, Hasan Hüseyin</creator><creatorcontrib>Nebiyev, Celil ; Ökten, Hasan Hüseyin</creatorcontrib><description>Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supple-mented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2022.3655</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Codes ; Modules</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2022, Vol.23 (1), p.381-387</ispartof><rights>Copyright University of Miskolc 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Nebiyev, Celil</creatorcontrib><creatorcontrib>Ökten, Hasan Hüseyin</creatorcontrib><title>Cofinitely essential g-supplemented modules</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supple-mented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented.</description><subject>Codes</subject><subject>Modules</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kM1LxDAUxIMouKx79VzwKK15-c5RirrCrl70HJo0kS79MmkP-9_bdcW5vBkY3sAPoVvABSgO7GG_fysIJqSggvMLtAKpZE4Y0Mt_j_k12qR0wIs4E5LpFbovh9D0zeTbY-ZT8v3UVG32lad5HFvfLdnXWTfUc-vTDboKVZv85u-u0efz00e5zXfvL6_l4y53oMmUSxkUrRVlSmDQzp3GCFEiYGwleMyqikntqNWahhpqawXlgVNvLVXcMbpGd-e_Yxy-Z58mcxjm2C-ThggpBGgGfGkV55aLQ0rRBzPGpqvi0QA2v0zMwsScmJgTE_oD4VxSSw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Nebiyev, Celil</creator><creator>Ökten, Hasan Hüseyin</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2022</creationdate><title>Cofinitely essential g-supplemented modules</title><author>Nebiyev, Celil ; Ökten, Hasan Hüseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c192t-77f83d83486019cc00542286f00b71e04aa479c3b993fd1dbb635f53ebb385c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Codes</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nebiyev, Celil</creatorcontrib><creatorcontrib>Ökten, Hasan Hüseyin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nebiyev, Celil</au><au>Ökten, Hasan Hüseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cofinitely essential g-supplemented modules</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2022</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>381</spage><epage>387</epage><pages>381-387</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>Let M be an R-module. If every cofinite essential submodule of M has a g-supplement in M, then M is called a cofinitely essential g-supplemented (or briefly cofinitely eg-supple-mented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of a cofinitely eg-supplemented module are cofinitely eg-supplemented. Let M be a cofinitely eg-supplemented module. Then every M-generated R-module is cofinitely eg-supplemented.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2022.3655</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1787-2405 |
ispartof | Mathematical notes (Miskolci Egyetem (Hungary)), 2022, Vol.23 (1), p.381-387 |
issn | 1787-2405 1787-2413 |
language | eng |
recordid | cdi_proquest_journals_2676619415 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Codes Modules |
title | Cofinitely essential g-supplemented modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cofinitely%20essential%20g-supplemented%20modules&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Nebiyev,%20Celil&rft.date=2022&rft.volume=23&rft.issue=1&rft.spage=381&rft.epage=387&rft.pages=381-387&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2022.3655&rft_dat=%3Cproquest_cross%3E2676619415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676619415&rft_id=info:pmid/&rfr_iscdi=true |