Measure theoretic generalizations of Jensen's inequality by Fink's identity

We generalize integral Jensen's inequality and its converse for real Stieltjes measure utilizing the theory of n-convex function by employing Fink's identity. We also give several versions of discrete Jensen's inequality along with its reverses and its converse for real weights. As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2022, Vol.23 (1), p.131-154
Hauptverfasser: Butt, S. I., Rasheed, T., Pecaric, D., Pecaric, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 131
container_title Mathematical notes (Miskolci Egyetem (Hungary))
container_volume 23
creator Butt, S. I.
Rasheed, T.
Pecaric, D.
Pecaric, J.
description We generalize integral Jensen's inequality and its converse for real Stieltjes measure utilizing the theory of n-convex function by employing Fink's identity. We also give several versions of discrete Jensen's inequality along with its reverses and its converse for real weights. As an application we give generalized variants of Hermite-Hadamard's inequality. Also we give applications in information theory by giving new estimations of generalized divergence functional, Shannon and relative entropies. Finally we give connections to Zipf-Mandelbrot and hybrid Zipf-Mandelbrot entropies.
doi_str_mv 10.18514/MMN.2022.3656
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676616284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676616284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-77e9b39f8bc98ed4179c58da9fe715624ef6ee74967da334f97cfa2970468e193</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EElXpymyJgSkh_og_RlRRCrSwwGy5yRlSitPazlD-elyKuOVO757unX4IXZKqJKom_Ga5fC5pRWnJRC1O0IhIJQvKCTv9n6v6HE1iXFe5ai4k1yP0tAQbhwA4fUAfIHUNfgcPwW66b5u63kfcO_wIPoK_jrjzsBvyLu3xao9nnf88iC34lKULdObsJsLkr4_R2-zudTovFi_3D9PbRdFQJlMhJegV006tGq2g5UTqplat1Q4kqQXl4ARA_k7I1jLGnZaNs1TLigsFRLMxujre3YZ-N0BMZt0PwedIQ4UUggiqeHaVR1cT-hgDOLMN3ZcNe0Mq88vMZGbmwMwcmLEfXNtemQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676616284</pqid></control><display><type>article</type><title>Measure theoretic generalizations of Jensen's inequality by Fink's identity</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Butt, S. I. ; Rasheed, T. ; Pecaric, D. ; Pecaric, J.</creator><creatorcontrib>Butt, S. I. ; Rasheed, T. ; Pecaric, D. ; Pecaric, J.</creatorcontrib><description>We generalize integral Jensen's inequality and its converse for real Stieltjes measure utilizing the theory of n-convex function by employing Fink's identity. We also give several versions of discrete Jensen's inequality along with its reverses and its converse for real weights. As an application we give generalized variants of Hermite-Hadamard's inequality. Also we give applications in information theory by giving new estimations of generalized divergence functional, Shannon and relative entropies. Finally we give connections to Zipf-Mandelbrot and hybrid Zipf-Mandelbrot entropies.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2022.3656</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Convex analysis ; Inequality ; Information theory ; Random variables</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2022, Vol.23 (1), p.131-154</ispartof><rights>Copyright University of Miskolc 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237t-77e9b39f8bc98ed4179c58da9fe715624ef6ee74967da334f97cfa2970468e193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Rasheed, T.</creatorcontrib><creatorcontrib>Pecaric, D.</creatorcontrib><creatorcontrib>Pecaric, J.</creatorcontrib><title>Measure theoretic generalizations of Jensen's inequality by Fink's identity</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>We generalize integral Jensen's inequality and its converse for real Stieltjes measure utilizing the theory of n-convex function by employing Fink's identity. We also give several versions of discrete Jensen's inequality along with its reverses and its converse for real weights. As an application we give generalized variants of Hermite-Hadamard's inequality. Also we give applications in information theory by giving new estimations of generalized divergence functional, Shannon and relative entropies. Finally we give connections to Zipf-Mandelbrot and hybrid Zipf-Mandelbrot entropies.</description><subject>Convex analysis</subject><subject>Inequality</subject><subject>Information theory</subject><subject>Random variables</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kL1PwzAQxS0EElXpymyJgSkh_og_RlRRCrSwwGy5yRlSitPazlD-elyKuOVO757unX4IXZKqJKom_Ga5fC5pRWnJRC1O0IhIJQvKCTv9n6v6HE1iXFe5ai4k1yP0tAQbhwA4fUAfIHUNfgcPwW66b5u63kfcO_wIPoK_jrjzsBvyLu3xao9nnf88iC34lKULdObsJsLkr4_R2-zudTovFi_3D9PbRdFQJlMhJegV006tGq2g5UTqplat1Q4kqQXl4ARA_k7I1jLGnZaNs1TLigsFRLMxujre3YZ-N0BMZt0PwedIQ4UUggiqeHaVR1cT-hgDOLMN3ZcNe0Mq88vMZGbmwMwcmLEfXNtemQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Butt, S. I.</creator><creator>Rasheed, T.</creator><creator>Pecaric, D.</creator><creator>Pecaric, J.</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2022</creationdate><title>Measure theoretic generalizations of Jensen's inequality by Fink's identity</title><author>Butt, S. I. ; Rasheed, T. ; Pecaric, D. ; Pecaric, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-77e9b39f8bc98ed4179c58da9fe715624ef6ee74967da334f97cfa2970468e193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convex analysis</topic><topic>Inequality</topic><topic>Information theory</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, S. I.</creatorcontrib><creatorcontrib>Rasheed, T.</creatorcontrib><creatorcontrib>Pecaric, D.</creatorcontrib><creatorcontrib>Pecaric, J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, S. I.</au><au>Rasheed, T.</au><au>Pecaric, D.</au><au>Pecaric, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure theoretic generalizations of Jensen's inequality by Fink's identity</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2022</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>131</spage><epage>154</epage><pages>131-154</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>We generalize integral Jensen's inequality and its converse for real Stieltjes measure utilizing the theory of n-convex function by employing Fink's identity. We also give several versions of discrete Jensen's inequality along with its reverses and its converse for real weights. As an application we give generalized variants of Hermite-Hadamard's inequality. Also we give applications in information theory by giving new estimations of generalized divergence functional, Shannon and relative entropies. Finally we give connections to Zipf-Mandelbrot and hybrid Zipf-Mandelbrot entropies.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2022.3656</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1787-2405
ispartof Mathematical notes (Miskolci Egyetem (Hungary)), 2022, Vol.23 (1), p.131-154
issn 1787-2405
1787-2413
language eng
recordid cdi_proquest_journals_2676616284
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Convex analysis
Inequality
Information theory
Random variables
title Measure theoretic generalizations of Jensen's inequality by Fink's identity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure%20theoretic%20generalizations%20of%20Jensen's%20inequality%20by%20Fink's%20identity&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Butt,%20S.%20I.&rft.date=2022&rft.volume=23&rft.issue=1&rft.spage=131&rft.epage=154&rft.pages=131-154&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2022.3656&rft_dat=%3Cproquest_cross%3E2676616284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676616284&rft_id=info:pmid/&rfr_iscdi=true