A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker
Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-06, Vol.15 (6), p.2653-2663 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2663 |
---|---|
container_issue | 6 |
container_start_page | 2653 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Shang, Yanxin Chen, Shi Chen, Nan Li, Yuejiao Lai, Jingning Ma, Yue Chen, Jun Wu, Feng Chen, Renjie |
description | Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS)
0.5
Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi
0.5
Mn
1.5
O
4
/Li
4
Ti
5
O
12
full cell achieved an energy density of 136 W h kg
−1
for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications. |
doi_str_mv | 10.1039/D2EE00417H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676566613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676566613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</originalsourceid><addsrcrecordid>eNpFUF9LwzAcDKLgnL74CQK-CdUkbZLmcczNCQNf9Ln82vz6Z9ZmJulg397KFJ_u4I674wi55eyBs9Q8PonVirGM680ZmXEts0Rqps7_uDLiklyFsGNMCabNjPQLOg7dAX2AnoboIWJzpLXztO2aNjm4PkKDFL5GdGOgJcSIvsNADx3Q3g1I99B5ij1W0bshUAg0tkjbo_WuwYGWbrBJ6RE-0F-Tixr6gDe_OCfv69XbcpNsX59flottUglpYlJnOis1VDYzMq10iTrNjc1zqAwqy0thM1lxnpkcc8YQUIAQxspJsjkrZTond6fcvXfT8BCLnRv9MFUWQmkllVI8nVz3J1flXQge62Lvu0_wx4Kz4ufN4v_N9BsVnmis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676566613</pqid></control><display><type>article</type><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</creator><creatorcontrib>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</creatorcontrib><description>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS)
0.5
Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi
0.5
Mn
1.5
O
4
/Li
4
Ti
5
O
12
full cell achieved an energy density of 136 W h kg
−1
for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE00417H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Batteries ; Electrochemistry ; Electrolytes ; Electrons ; Energy storage ; Freezing ; Freezing point ; High voltages ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrogen evolution reactions ; Interface stability ; Lithium-ion batteries ; Low temperature ; Melting points ; Rechargeable batteries ; Renewable energy ; Sustainability ; Toxicity ; Voltage ; Water activity</subject><ispartof>Energy & environmental science, 2022-06, Vol.15 (6), p.2653-2663</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</citedby><cites>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</cites><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Li, Yuejiao</creatorcontrib><creatorcontrib>Lai, Jingning</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><title>Energy & environmental science</title><description>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS)
0.5
Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi
0.5
Mn
1.5
O
4
/Li
4
Ti
5
O
12
full cell achieved an energy density of 136 W h kg
−1
for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>High voltages</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen evolution reactions</subject><subject>Interface stability</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Rechargeable batteries</subject><subject>Renewable energy</subject><subject>Sustainability</subject><subject>Toxicity</subject><subject>Voltage</subject><subject>Water activity</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUF9LwzAcDKLgnL74CQK-CdUkbZLmcczNCQNf9Ln82vz6Z9ZmJulg397KFJ_u4I674wi55eyBs9Q8PonVirGM680ZmXEts0Rqps7_uDLiklyFsGNMCabNjPQLOg7dAX2AnoboIWJzpLXztO2aNjm4PkKDFL5GdGOgJcSIvsNADx3Q3g1I99B5ij1W0bshUAg0tkjbo_WuwYGWbrBJ6RE-0F-Tixr6gDe_OCfv69XbcpNsX59flottUglpYlJnOis1VDYzMq10iTrNjc1zqAwqy0thM1lxnpkcc8YQUIAQxspJsjkrZTond6fcvXfT8BCLnRv9MFUWQmkllVI8nVz3J1flXQge62Lvu0_wx4Kz4ufN4v_N9BsVnmis</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Shang, Yanxin</creator><creator>Chen, Shi</creator><creator>Chen, Nan</creator><creator>Li, Yuejiao</creator><creator>Lai, Jingning</creator><creator>Ma, Yue</creator><creator>Chen, Jun</creator><creator>Wu, Feng</creator><creator>Chen, Renjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20220615</creationdate><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><author>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>High voltages</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen evolution reactions</topic><topic>Interface stability</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Rechargeable batteries</topic><topic>Renewable energy</topic><topic>Sustainability</topic><topic>Toxicity</topic><topic>Voltage</topic><topic>Water activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Li, Yuejiao</creatorcontrib><creatorcontrib>Lai, Jingning</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Yanxin</au><au>Chen, Shi</au><au>Chen, Nan</au><au>Li, Yuejiao</au><au>Lai, Jingning</au><au>Ma, Yue</au><au>Chen, Jun</au><au>Wu, Feng</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</atitle><jtitle>Energy & environmental science</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2653</spage><epage>2663</epage><pages>2653-2663</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS)
0.5
Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi
0.5
Mn
1.5
O
4
/Li
4
Ti
5
O
12
full cell achieved an energy density of 136 W h kg
−1
for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE00417H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-06, Vol.15 (6), p.2653-2663 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2676566613 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aqueous electrolytes Batteries Electrochemistry Electrolytes Electrons Energy storage Freezing Freezing point High voltages Hydrogen Hydrogen bonding Hydrogen bonds Hydrogen evolution reactions Interface stability Lithium-ion batteries Low temperature Melting points Rechargeable batteries Renewable energy Sustainability Toxicity Voltage Water activity |
title | A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20strategy%20for%20high-voltage%20aqueous%20batteries%20via%20lone%20pair%20electrons%20as%20the%20hydrogen%20bond-breaker&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Shang,%20Yanxin&rft.date=2022-06-15&rft.volume=15&rft.issue=6&rft.spage=2653&rft.epage=2663&rft.pages=2653-2663&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE00417H&rft_dat=%3Cproquest_cross%3E2676566613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676566613&rft_id=info:pmid/&rfr_iscdi=true |