A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker

Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2022-06, Vol.15 (6), p.2653-2663
Hauptverfasser: Shang, Yanxin, Chen, Shi, Chen, Nan, Li, Yuejiao, Lai, Jingning, Ma, Yue, Chen, Jun, Wu, Feng, Chen, Renjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2663
container_issue 6
container_start_page 2653
container_title Energy & environmental science
container_volume 15
creator Shang, Yanxin
Chen, Shi
Chen, Nan
Li, Yuejiao
Lai, Jingning
Ma, Yue
Chen, Jun
Wu, Feng
Chen, Renjie
description Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS) 0.5 Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 full cell achieved an energy density of 136 W h kg −1 for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.
doi_str_mv 10.1039/D2EE00417H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676566613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676566613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</originalsourceid><addsrcrecordid>eNpFUF9LwzAcDKLgnL74CQK-CdUkbZLmcczNCQNf9Ln82vz6Z9ZmJulg397KFJ_u4I674wi55eyBs9Q8PonVirGM680ZmXEts0Rqps7_uDLiklyFsGNMCabNjPQLOg7dAX2AnoboIWJzpLXztO2aNjm4PkKDFL5GdGOgJcSIvsNADx3Q3g1I99B5ij1W0bshUAg0tkjbo_WuwYGWbrBJ6RE-0F-Tixr6gDe_OCfv69XbcpNsX59flottUglpYlJnOis1VDYzMq10iTrNjc1zqAwqy0thM1lxnpkcc8YQUIAQxspJsjkrZTond6fcvXfT8BCLnRv9MFUWQmkllVI8nVz3J1flXQge62Lvu0_wx4Kz4ufN4v_N9BsVnmis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676566613</pqid></control><display><type>article</type><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</creator><creatorcontrib>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</creatorcontrib><description>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS) 0.5 Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 full cell achieved an energy density of 136 W h kg −1 for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/D2EE00417H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Batteries ; Electrochemistry ; Electrolytes ; Electrons ; Energy storage ; Freezing ; Freezing point ; High voltages ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrogen evolution reactions ; Interface stability ; Lithium-ion batteries ; Low temperature ; Melting points ; Rechargeable batteries ; Renewable energy ; Sustainability ; Toxicity ; Voltage ; Water activity</subject><ispartof>Energy &amp; environmental science, 2022-06, Vol.15 (6), p.2653-2663</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</citedby><cites>FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</cites><orcidid>0000-0002-7001-2926</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Li, Yuejiao</creatorcontrib><creatorcontrib>Lai, Jingning</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><title>Energy &amp; environmental science</title><description>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS) 0.5 Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 full cell achieved an energy density of 136 W h kg −1 for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Electrochemistry</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>High voltages</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen evolution reactions</subject><subject>Interface stability</subject><subject>Lithium-ion batteries</subject><subject>Low temperature</subject><subject>Melting points</subject><subject>Rechargeable batteries</subject><subject>Renewable energy</subject><subject>Sustainability</subject><subject>Toxicity</subject><subject>Voltage</subject><subject>Water activity</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFUF9LwzAcDKLgnL74CQK-CdUkbZLmcczNCQNf9Ln82vz6Z9ZmJulg397KFJ_u4I674wi55eyBs9Q8PonVirGM680ZmXEts0Rqps7_uDLiklyFsGNMCabNjPQLOg7dAX2AnoboIWJzpLXztO2aNjm4PkKDFL5GdGOgJcSIvsNADx3Q3g1I99B5ij1W0bshUAg0tkjbo_WuwYGWbrBJ6RE-0F-Tixr6gDe_OCfv69XbcpNsX59flottUglpYlJnOis1VDYzMq10iTrNjc1zqAwqy0thM1lxnpkcc8YQUIAQxspJsjkrZTond6fcvXfT8BCLnRv9MFUWQmkllVI8nVz3J1flXQge62Lvu0_wx4Kz4ufN4v_N9BsVnmis</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Shang, Yanxin</creator><creator>Chen, Shi</creator><creator>Chen, Nan</creator><creator>Li, Yuejiao</creator><creator>Lai, Jingning</creator><creator>Ma, Yue</creator><creator>Chen, Jun</creator><creator>Wu, Feng</creator><creator>Chen, Renjie</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></search><sort><creationdate>20220615</creationdate><title>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</title><author>Shang, Yanxin ; Chen, Shi ; Chen, Nan ; Li, Yuejiao ; Lai, Jingning ; Ma, Yue ; Chen, Jun ; Wu, Feng ; Chen, Renjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-f474b7acd4953c7be7389d88ac9e6d1b2d45c11498e800eae2a229d5d1bd80b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Electrochemistry</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>High voltages</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen evolution reactions</topic><topic>Interface stability</topic><topic>Lithium-ion batteries</topic><topic>Low temperature</topic><topic>Melting points</topic><topic>Rechargeable batteries</topic><topic>Renewable energy</topic><topic>Sustainability</topic><topic>Toxicity</topic><topic>Voltage</topic><topic>Water activity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Yanxin</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><creatorcontrib>Li, Yuejiao</creatorcontrib><creatorcontrib>Lai, Jingning</creatorcontrib><creatorcontrib>Ma, Yue</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Chen, Renjie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Yanxin</au><au>Chen, Shi</au><au>Chen, Nan</au><au>Li, Yuejiao</au><au>Lai, Jingning</au><au>Ma, Yue</au><au>Chen, Jun</au><au>Wu, Feng</au><au>Chen, Renjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2022-06-15</date><risdate>2022</risdate><volume>15</volume><issue>6</issue><spage>2653</spage><epage>2663</epage><pages>2653-2663</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Aqueous batteries have attracted extensive attention for their safety, low cost, and non-toxicity properties. However, the narrow electrochemical stability window and freezing of water at a low temperature limit the energy density and working temperature range of aqueous Li-ion batteries. Herein, we introduce a “hydrogen bond-captured” solvent, which has lone pair electrons on the oxygen atom, to break the original water hydrogen bond network by forming intermolecular hydrogen bonds, resulting in the suppressed hydrogen evolution reaction (HER) and reduced water activity. The “LiTFSI(TMS) 0.5 Water” electrolyte enables stable interfacial chemistry, broadens the electrochemical stability window to 5.4 V and exhibits a freezing point lower than −85 °C. An aqueous LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 full cell achieved an energy density of 136 W h kg −1 for 300 cycles at 6C. An understanding of how to alter the thermodynamics pathway of the HER in the electrolyte provides a practical guideline for designing high-voltage and wide temperature range aqueous electrolytes for sustainable energy storage applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2EE00417H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7001-2926</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2022-06, Vol.15 (6), p.2653-2663
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2676566613
source Royal Society Of Chemistry Journals 2008-
subjects Aqueous electrolytes
Batteries
Electrochemistry
Electrolytes
Electrons
Energy storage
Freezing
Freezing point
High voltages
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrogen evolution reactions
Interface stability
Lithium-ion batteries
Low temperature
Melting points
Rechargeable batteries
Renewable energy
Sustainability
Toxicity
Voltage
Water activity
title A universal strategy for high-voltage aqueous batteries via lone pair electrons as the hydrogen bond-breaker
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20strategy%20for%20high-voltage%20aqueous%20batteries%20via%20lone%20pair%20electrons%20as%20the%20hydrogen%20bond-breaker&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Shang,%20Yanxin&rft.date=2022-06-15&rft.volume=15&rft.issue=6&rft.spage=2653&rft.epage=2663&rft.pages=2653-2663&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/D2EE00417H&rft_dat=%3Cproquest_cross%3E2676566613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676566613&rft_id=info:pmid/&rfr_iscdi=true