Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition

The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-06, Vol.9 (17), p.n/a
Hauptverfasser: Huang, Zhijia, Han, Zhiyuan, Jiang, Baozheng, Zhang, Yunbo, Gu, Sichen, Zhang, Chen, Pan, Zhengze, Nishihara, Hirotomo, Yang, Quan‐Hong, Lv, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page
container_title Advanced materials interfaces
container_volume 9
creator Huang, Zhijia
Han, Zhiyuan
Jiang, Baozheng
Zhang, Yunbo
Gu, Sichen
Zhang, Chen
Pan, Zhengze
Nishihara, Hirotomo
Yang, Quan‐Hong
Lv, Wei
description The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries. A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.
doi_str_mv 10.1002/admi.202200457
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676333807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676333807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhSMEElVhZbbE3OJLYjtj1VIaqQiJy2w5jpO4SuNiO0A2HoFn5ElIVQRsTP8Zvu_80omiCwSnCEJ8JYutmWKIMYRxwo6iEUYpnTCSwOM_-TQ6934DIUQII8zJKKrvddU1Mpi2Amvz-f5hbAuWTfcGQu1sV9VAgoVuvQa9DmBlqrrpQWZbo8DctkWngnnRIGuDdo3stQOldeAhyLzRQ9-g7qw3YSg9i05K2Xh9_n3H0dPy-nG-mqzvbrL5bD1RBDE2iQvFsFSQ8jxnmuCEcyQTymKpFC-xTglKJaJUUhJzzhOGCC8SxRGFaY5YSsbR5aF35-xzp30QG9u5dngpMGWUEMIhG6jpgVLOeu90KXbObKXrBYJiP6jYDyp-Bh2E9CC8mkb3_9BitrjNft0vLkd5aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676333807</pqid></control><display><type>article</type><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</creator><creatorcontrib>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</creatorcontrib><description>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries. A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202200457</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Dendritic structure ; Deposition ; Electrodes ; Electrolytic cells ; Interlayers ; Ion distribution ; Ion flux ; Ion transport ; Lithium batteries ; Lithium oxides ; lithium‐metal batteries ; Li‐ion redistribution ; metal/Li 2O hybrid layer ; Nanoparticles ; Separators ; Transition metal oxides</subject><ispartof>Advanced materials interfaces, 2022-06, Vol.9 (17), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</citedby><cites>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</cites><orcidid>0000-0003-0874-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202200457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202200457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Zhijia</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Baozheng</creatorcontrib><creatorcontrib>Zhang, Yunbo</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Pan, Zhengze</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><creatorcontrib>Yang, Quan‐Hong</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><title>Advanced materials interfaces</title><description>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries. A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</description><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Interlayers</subject><subject>Ion distribution</subject><subject>Ion flux</subject><subject>Ion transport</subject><subject>Lithium batteries</subject><subject>Lithium oxides</subject><subject>lithium‐metal batteries</subject><subject>Li‐ion redistribution</subject><subject>metal/Li 2O hybrid layer</subject><subject>Nanoparticles</subject><subject>Separators</subject><subject>Transition metal oxides</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAYhSMEElVhZbbE3OJLYjtj1VIaqQiJy2w5jpO4SuNiO0A2HoFn5ElIVQRsTP8Zvu_80omiCwSnCEJ8JYutmWKIMYRxwo6iEUYpnTCSwOM_-TQ6934DIUQII8zJKKrvddU1Mpi2Amvz-f5hbAuWTfcGQu1sV9VAgoVuvQa9DmBlqrrpQWZbo8DctkWngnnRIGuDdo3stQOldeAhyLzRQ9-g7qw3YSg9i05K2Xh9_n3H0dPy-nG-mqzvbrL5bD1RBDE2iQvFsFSQ8jxnmuCEcyQTymKpFC-xTglKJaJUUhJzzhOGCC8SxRGFaY5YSsbR5aF35-xzp30QG9u5dngpMGWUEMIhG6jpgVLOeu90KXbObKXrBYJiP6jYDyp-Bh2E9CC8mkb3_9BitrjNft0vLkd5aw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huang, Zhijia</creator><creator>Han, Zhiyuan</creator><creator>Jiang, Baozheng</creator><creator>Zhang, Yunbo</creator><creator>Gu, Sichen</creator><creator>Zhang, Chen</creator><creator>Pan, Zhengze</creator><creator>Nishihara, Hirotomo</creator><creator>Yang, Quan‐Hong</creator><creator>Lv, Wei</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0874-3477</orcidid></search><sort><creationdate>20220601</creationdate><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><author>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Interlayers</topic><topic>Ion distribution</topic><topic>Ion flux</topic><topic>Ion transport</topic><topic>Lithium batteries</topic><topic>Lithium oxides</topic><topic>lithium‐metal batteries</topic><topic>Li‐ion redistribution</topic><topic>metal/Li 2O hybrid layer</topic><topic>Nanoparticles</topic><topic>Separators</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhijia</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Baozheng</creatorcontrib><creatorcontrib>Zhang, Yunbo</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Pan, Zhengze</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><creatorcontrib>Yang, Quan‐Hong</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhijia</au><au>Han, Zhiyuan</au><au>Jiang, Baozheng</au><au>Zhang, Yunbo</au><au>Gu, Sichen</au><au>Zhang, Chen</au><au>Pan, Zhengze</au><au>Nishihara, Hirotomo</au><au>Yang, Quan‐Hong</au><au>Lv, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>17</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries. A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202200457</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0874-3477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2022-06, Vol.9 (17), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2676333807
source Wiley Online Library Journals Frontfile Complete
subjects Dendritic structure
Deposition
Electrodes
Electrolytic cells
Interlayers
Ion distribution
Ion flux
Ion transport
Lithium batteries
Lithium oxides
lithium‐metal batteries
Li‐ion redistribution
metal/Li 2O hybrid layer
Nanoparticles
Separators
Transition metal oxides
title Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Li%E2%80%90ion%20Flux%20through%20a%20Dense%20yet%20Highly%20Ionic%20Conductive%20Interlayer%20for%20Stable%20Li%20Deposition&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Huang,%20Zhijia&rft.date=2022-06-01&rft.volume=9&rft.issue=17&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202200457&rft_dat=%3Cproquest_cross%3E2676333807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676333807&rft_id=info:pmid/&rfr_iscdi=true