Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition
The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition b...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-06, Vol.9 (17), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Huang, Zhijia Han, Zhiyuan Jiang, Baozheng Zhang, Yunbo Gu, Sichen Zhang, Chen Pan, Zhengze Nishihara, Hirotomo Yang, Quan‐Hong Lv, Wei |
description | The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries.
A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes. |
doi_str_mv | 10.1002/admi.202200457 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676333807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676333807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</originalsourceid><addsrcrecordid>eNqFkLtOwzAYhSMEElVhZbbE3OJLYjtj1VIaqQiJy2w5jpO4SuNiO0A2HoFn5ElIVQRsTP8Zvu_80omiCwSnCEJ8JYutmWKIMYRxwo6iEUYpnTCSwOM_-TQ6934DIUQII8zJKKrvddU1Mpi2Amvz-f5hbAuWTfcGQu1sV9VAgoVuvQa9DmBlqrrpQWZbo8DctkWngnnRIGuDdo3stQOldeAhyLzRQ9-g7qw3YSg9i05K2Xh9_n3H0dPy-nG-mqzvbrL5bD1RBDE2iQvFsFSQ8jxnmuCEcyQTymKpFC-xTglKJaJUUhJzzhOGCC8SxRGFaY5YSsbR5aF35-xzp30QG9u5dngpMGWUEMIhG6jpgVLOeu90KXbObKXrBYJiP6jYDyp-Bh2E9CC8mkb3_9BitrjNft0vLkd5aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676333807</pqid></control><display><type>article</type><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</creator><creatorcontrib>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</creatorcontrib><description>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries.
A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202200457</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Dendritic structure ; Deposition ; Electrodes ; Electrolytic cells ; Interlayers ; Ion distribution ; Ion flux ; Ion transport ; Lithium batteries ; Lithium oxides ; lithium‐metal batteries ; Li‐ion redistribution ; metal/Li 2O hybrid layer ; Nanoparticles ; Separators ; Transition metal oxides</subject><ispartof>Advanced materials interfaces, 2022-06, Vol.9 (17), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</citedby><cites>FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</cites><orcidid>0000-0003-0874-3477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202200457$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202200457$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Zhijia</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Baozheng</creatorcontrib><creatorcontrib>Zhang, Yunbo</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Pan, Zhengze</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><creatorcontrib>Yang, Quan‐Hong</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><title>Advanced materials interfaces</title><description>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries.
A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</description><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Interlayers</subject><subject>Ion distribution</subject><subject>Ion flux</subject><subject>Ion transport</subject><subject>Lithium batteries</subject><subject>Lithium oxides</subject><subject>lithium‐metal batteries</subject><subject>Li‐ion redistribution</subject><subject>metal/Li 2O hybrid layer</subject><subject>Nanoparticles</subject><subject>Separators</subject><subject>Transition metal oxides</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAYhSMEElVhZbbE3OJLYjtj1VIaqQiJy2w5jpO4SuNiO0A2HoFn5ElIVQRsTP8Zvu_80omiCwSnCEJ8JYutmWKIMYRxwo6iEUYpnTCSwOM_-TQ6934DIUQII8zJKKrvddU1Mpi2Amvz-f5hbAuWTfcGQu1sV9VAgoVuvQa9DmBlqrrpQWZbo8DctkWngnnRIGuDdo3stQOldeAhyLzRQ9-g7qw3YSg9i05K2Xh9_n3H0dPy-nG-mqzvbrL5bD1RBDE2iQvFsFSQ8jxnmuCEcyQTymKpFC-xTglKJaJUUhJzzhOGCC8SxRGFaY5YSsbR5aF35-xzp30QG9u5dngpMGWUEMIhG6jpgVLOeu90KXbObKXrBYJiP6jYDyp-Bh2E9CC8mkb3_9BitrjNft0vLkd5aw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huang, Zhijia</creator><creator>Han, Zhiyuan</creator><creator>Jiang, Baozheng</creator><creator>Zhang, Yunbo</creator><creator>Gu, Sichen</creator><creator>Zhang, Chen</creator><creator>Pan, Zhengze</creator><creator>Nishihara, Hirotomo</creator><creator>Yang, Quan‐Hong</creator><creator>Lv, Wei</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0874-3477</orcidid></search><sort><creationdate>20220601</creationdate><title>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</title><author>Huang, Zhijia ; Han, Zhiyuan ; Jiang, Baozheng ; Zhang, Yunbo ; Gu, Sichen ; Zhang, Chen ; Pan, Zhengze ; Nishihara, Hirotomo ; Yang, Quan‐Hong ; Lv, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-4dc72ac068bb7e325881a5674acc8f2e9319a166a63488857138d5c81609b1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Interlayers</topic><topic>Ion distribution</topic><topic>Ion flux</topic><topic>Ion transport</topic><topic>Lithium batteries</topic><topic>Lithium oxides</topic><topic>lithium‐metal batteries</topic><topic>Li‐ion redistribution</topic><topic>metal/Li 2O hybrid layer</topic><topic>Nanoparticles</topic><topic>Separators</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhijia</creatorcontrib><creatorcontrib>Han, Zhiyuan</creatorcontrib><creatorcontrib>Jiang, Baozheng</creatorcontrib><creatorcontrib>Zhang, Yunbo</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Pan, Zhengze</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><creatorcontrib>Yang, Quan‐Hong</creatorcontrib><creatorcontrib>Lv, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhijia</au><au>Han, Zhiyuan</au><au>Jiang, Baozheng</au><au>Zhang, Yunbo</au><au>Gu, Sichen</au><au>Zhang, Chen</au><au>Pan, Zhengze</au><au>Nishihara, Hirotomo</au><au>Yang, Quan‐Hong</au><au>Lv, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>9</volume><issue>17</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The practical use of Li metal anode is severely hindered by the uncontrollable dendrite growth, and the main cause is the uneven deposition of Li metal. In the liquid electrolyte, the Li‐ion distribution on the electrode surface is difficult to be regulated, which largely affects the Li deposition behavior. The authors design a dense Li‐ion flux regulating layer on the separator to well guide the Li‐ion transport that is composed of metal/lithium oxide (Li2O). Such a layer is generated from the in situ lithiation of transition metal oxide nanoparticle (TMO NP) coating, in which the lithiation‐induced volume expansion of TMO NPs makes the coating very dense yet highly ionic conductive due to the rich boundaries between the formed metal/Li2O. Such a layer enables the redistribution of Li ions on the surface of the electrode to effectively suppress the dendrite growth. The symmetric cells with such layers maintain stable cycling over 400 h under 3 mA cm–2, and the full cell coupled with LiFePO4 presents a highly stable cycling performance with high‐capacity retention of 85.2% after 350 cycles at 0.5 C with a low N/P ratio, promising a potential application in next‐generation Li metal batteries.
A dense yet ionic conductive layer derived from the lithiation of transition metal oxide nanoparticles (TMO NPs) coating on the separator regulates Li‐ion flux and distribution on the electrode surface, effectively suppressing the Li dendrite growth and enhancing the cycling stability for Li metal anodes.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202200457</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0874-3477</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-06, Vol.9 (17), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2676333807 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Dendritic structure Deposition Electrodes Electrolytic cells Interlayers Ion distribution Ion flux Ion transport Lithium batteries Lithium oxides lithium‐metal batteries Li‐ion redistribution metal/Li 2O hybrid layer Nanoparticles Separators Transition metal oxides |
title | Regulating Li‐ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Li%E2%80%90ion%20Flux%20through%20a%20Dense%20yet%20Highly%20Ionic%20Conductive%20Interlayer%20for%20Stable%20Li%20Deposition&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Huang,%20Zhijia&rft.date=2022-06-01&rft.volume=9&rft.issue=17&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202200457&rft_dat=%3Cproquest_cross%3E2676333807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676333807&rft_id=info:pmid/&rfr_iscdi=true |