Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation

Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a compr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2022-05, Vol.59 (3), p.102909, Article 102909
Hauptverfasser: Tanveer, M., Rashid, A.H., Kumar, Rahul, Balasubramanian, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 102909
container_title Information processing & management
container_volume 59
creator Tanveer, M.
Rashid, A.H.
Kumar, Rahul
Balasubramanian, R.
description Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area. •We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.
doi_str_mv 10.1016/j.ipm.2022.102909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676137652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030645732200036X</els_id><sourcerecordid>2676137652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLuC6475adNGVyL-wYCCunETMuntmM5MUpO2Mjtfw9fzScxQ164OB8459_IhdErwjGDCz5uZaTcziimNngos9tCElAVLc1aQfTTBDPM0ywt2iI5CaDDGWU7oBL09Kb8yNjj78_UdksoEUAGiqqV1wYSkD8YuEwu9V-so3afzq3CRPPd-gG2ibJVot2k9vIMNZoAEBrXuVWecPUYHtVoHOPnTKXq9vXm5vk_nj3cP11fzVDOad2kNFc4JE6Jc1FTVQnGuOeZ5LXhOa5oxUihecsEUIZUuC1AiW1RC86yiZZZjNkVn427r3UcPoZON672NJyXlBSesiEMxRcaU9i4ED7Vsvdkov5UEyx1C2ciIUO4QyhFh7FyOHYjvDwa8DNqA1VAZD7qTlTP_tH8B3ZF69Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676137652</pqid></control><display><type>article</type><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</creator><creatorcontrib>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</creatorcontrib><description>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area. •We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2022.102909</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Artificial neural networks ; Deep learning ; Diagnosis ; Machine Learning ; Medical diagnosis ; Multi-modal learning ; Neural networks ; Parkinson's disease</subject><ispartof>Information processing &amp; management, 2022-05, Vol.59 (3), p.102909, Article 102909</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</citedby><cites>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</cites><orcidid>0000-0001-6277-6267 ; 0000-0002-9266-9515 ; 0000-0002-5727-3697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipm.2022.102909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Rashid, A.H.</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><title>Information processing &amp; management</title><description>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area. •We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Multi-modal learning</subject><subject>Neural networks</subject><subject>Parkinson's disease</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLuC6475adNGVyL-wYCCunETMuntmM5MUpO2Mjtfw9fzScxQ164OB8459_IhdErwjGDCz5uZaTcziimNngos9tCElAVLc1aQfTTBDPM0ywt2iI5CaDDGWU7oBL09Kb8yNjj78_UdksoEUAGiqqV1wYSkD8YuEwu9V-so3afzq3CRPPd-gG2ibJVot2k9vIMNZoAEBrXuVWecPUYHtVoHOPnTKXq9vXm5vk_nj3cP11fzVDOad2kNFc4JE6Jc1FTVQnGuOeZ5LXhOa5oxUihecsEUIZUuC1AiW1RC86yiZZZjNkVn427r3UcPoZON672NJyXlBSesiEMxRcaU9i4ED7Vsvdkov5UEyx1C2ciIUO4QyhFh7FyOHYjvDwa8DNqA1VAZD7qTlTP_tH8B3ZF69Q</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Tanveer, M.</creator><creator>Rashid, A.H.</creator><creator>Kumar, Rahul</creator><creator>Balasubramanian, R.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-6277-6267</orcidid><orcidid>https://orcid.org/0000-0002-9266-9515</orcidid><orcidid>https://orcid.org/0000-0002-5727-3697</orcidid></search><sort><creationdate>202205</creationdate><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><author>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Multi-modal learning</topic><topic>Neural networks</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Rashid, A.H.</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanveer, M.</au><au>Rashid, A.H.</au><au>Kumar, Rahul</au><au>Balasubramanian, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</atitle><jtitle>Information processing &amp; management</jtitle><date>2022-05</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>102909</spage><pages>102909-</pages><artnum>102909</artnum><issn>0306-4573</issn><eissn>1873-5371</eissn><abstract>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area. •We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2022.102909</doi><orcidid>https://orcid.org/0000-0001-6277-6267</orcidid><orcidid>https://orcid.org/0000-0002-9266-9515</orcidid><orcidid>https://orcid.org/0000-0002-5727-3697</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2022-05, Vol.59 (3), p.102909, Article 102909
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_journals_2676137652
source ScienceDirect Journals (5 years ago - present)
subjects Artificial neural networks
Deep learning
Diagnosis
Machine Learning
Medical diagnosis
Multi-modal learning
Neural networks
Parkinson's disease
title Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s%20disease%20diagnosis%20using%20neural%20networks:%20Survey%20and%20comprehensive%20evaluation&rft.jtitle=Information%20processing%20&%20management&rft.au=Tanveer,%20M.&rft.date=2022-05&rft.volume=59&rft.issue=3&rft.spage=102909&rft.pages=102909-&rft.artnum=102909&rft.issn=0306-4573&rft.eissn=1873-5371&rft_id=info:doi/10.1016/j.ipm.2022.102909&rft_dat=%3Cproquest_cross%3E2676137652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676137652&rft_id=info:pmid/&rft_els_id=S030645732200036X&rfr_iscdi=true