Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation
Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a compr...
Gespeichert in:
Veröffentlicht in: | Information processing & management 2022-05, Vol.59 (3), p.102909, Article 102909 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 102909 |
container_title | Information processing & management |
container_volume | 59 |
creator | Tanveer, M. Rashid, A.H. Kumar, Rahul Balasubramanian, R. |
description | Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area.
•We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials. |
doi_str_mv | 10.1016/j.ipm.2022.102909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676137652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030645732200036X</els_id><sourcerecordid>2676137652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLuC6475adNGVyL-wYCCunETMuntmM5MUpO2Mjtfw9fzScxQ164OB8459_IhdErwjGDCz5uZaTcziimNngos9tCElAVLc1aQfTTBDPM0ywt2iI5CaDDGWU7oBL09Kb8yNjj78_UdksoEUAGiqqV1wYSkD8YuEwu9V-so3afzq3CRPPd-gG2ibJVot2k9vIMNZoAEBrXuVWecPUYHtVoHOPnTKXq9vXm5vk_nj3cP11fzVDOad2kNFc4JE6Jc1FTVQnGuOeZ5LXhOa5oxUihecsEUIZUuC1AiW1RC86yiZZZjNkVn427r3UcPoZON672NJyXlBSesiEMxRcaU9i4ED7Vsvdkov5UEyx1C2ciIUO4QyhFh7FyOHYjvDwa8DNqA1VAZD7qTlTP_tH8B3ZF69Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676137652</pqid></control><display><type>article</type><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</creator><creatorcontrib>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</creatorcontrib><description>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area.
•We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2022.102909</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Artificial neural networks ; Deep learning ; Diagnosis ; Machine Learning ; Medical diagnosis ; Multi-modal learning ; Neural networks ; Parkinson's disease</subject><ispartof>Information processing & management, 2022-05, Vol.59 (3), p.102909, Article 102909</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</citedby><cites>FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</cites><orcidid>0000-0001-6277-6267 ; 0000-0002-9266-9515 ; 0000-0002-5727-3697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ipm.2022.102909$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Rashid, A.H.</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><title>Information processing & management</title><description>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area.
•We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</description><subject>Artificial neural networks</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Machine Learning</subject><subject>Medical diagnosis</subject><subject>Multi-modal learning</subject><subject>Neural networks</subject><subject>Parkinson's disease</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLuC6475adNGVyL-wYCCunETMuntmM5MUpO2Mjtfw9fzScxQ164OB8459_IhdErwjGDCz5uZaTcziimNngos9tCElAVLc1aQfTTBDPM0ywt2iI5CaDDGWU7oBL09Kb8yNjj78_UdksoEUAGiqqV1wYSkD8YuEwu9V-so3afzq3CRPPd-gG2ibJVot2k9vIMNZoAEBrXuVWecPUYHtVoHOPnTKXq9vXm5vk_nj3cP11fzVDOad2kNFc4JE6Jc1FTVQnGuOeZ5LXhOa5oxUihecsEUIZUuC1AiW1RC86yiZZZjNkVn427r3UcPoZON672NJyXlBSesiEMxRcaU9i4ED7Vsvdkov5UEyx1C2ciIUO4QyhFh7FyOHYjvDwa8DNqA1VAZD7qTlTP_tH8B3ZF69Q</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Tanveer, M.</creator><creator>Rashid, A.H.</creator><creator>Kumar, Rahul</creator><creator>Balasubramanian, R.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0001-6277-6267</orcidid><orcidid>https://orcid.org/0000-0002-9266-9515</orcidid><orcidid>https://orcid.org/0000-0002-5727-3697</orcidid></search><sort><creationdate>202205</creationdate><title>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</title><author>Tanveer, M. ; Rashid, A.H. ; Kumar, Rahul ; Balasubramanian, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fed0513998bf2af9a66c6065f9652f24317a68693a11dc87ea94bd9c64d284503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Machine Learning</topic><topic>Medical diagnosis</topic><topic>Multi-modal learning</topic><topic>Neural networks</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanveer, M.</creatorcontrib><creatorcontrib>Rashid, A.H.</creatorcontrib><creatorcontrib>Kumar, Rahul</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Information processing & management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanveer, M.</au><au>Rashid, A.H.</au><au>Kumar, Rahul</au><au>Balasubramanian, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation</atitle><jtitle>Information processing & management</jtitle><date>2022-05</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>102909</spage><pages>102909-</pages><artnum>102909</artnum><issn>0306-4573</issn><eissn>1873-5371</eissn><abstract>Parkinson’s disease (PD) is a chronic neurodegenerative disease of that predominantly affects the elderly in today’s world. For the diagnosis of the early stages of PD, effective and powerful automated techniques are needed by recent enabling technologies as a tool. In this study, we present a comprehensive review of papers from 2013 to 2021 on the diagnosis of PD and its subtypes using artificial neural networks (ANNs) and deep neural networks (DNNs). We present detailed information and analysis regarding the usage of various modalities, datasets, architectures and experimental configurations in a succinct manner. We also present an in-depth comparative analysis of various proposed architectures. Finally, we present a number of relevant future directions for researchers in this area.
•We provide the most relevant information collected from 143 papers published from 2013–2021 on diagnosis and classification of Parkinson’s disease.•We used artificial and deep neural networks in a highly compact manner within this paper.•We design this paper in a manner that enables a reader to objectively compare the network architectures used by the researchers.•We provide insights on various aspects of deep networks and their training configurations used by researchers and discuss their efficacy.•We provide numerous future directions by the help of our discussions and supporting materials.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2022.102909</doi><orcidid>https://orcid.org/0000-0001-6277-6267</orcidid><orcidid>https://orcid.org/0000-0002-9266-9515</orcidid><orcidid>https://orcid.org/0000-0002-5727-3697</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-4573 |
ispartof | Information processing & management, 2022-05, Vol.59 (3), p.102909, Article 102909 |
issn | 0306-4573 1873-5371 |
language | eng |
recordid | cdi_proquest_journals_2676137652 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Artificial neural networks Deep learning Diagnosis Machine Learning Medical diagnosis Multi-modal learning Neural networks Parkinson's disease |
title | Parkinson’s disease diagnosis using neural networks: Survey and comprehensive evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parkinson%E2%80%99s%20disease%20diagnosis%20using%20neural%20networks:%20Survey%20and%20comprehensive%20evaluation&rft.jtitle=Information%20processing%20&%20management&rft.au=Tanveer,%20M.&rft.date=2022-05&rft.volume=59&rft.issue=3&rft.spage=102909&rft.pages=102909-&rft.artnum=102909&rft.issn=0306-4573&rft.eissn=1873-5371&rft_id=info:doi/10.1016/j.ipm.2022.102909&rft_dat=%3Cproquest_cross%3E2676137652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676137652&rft_id=info:pmid/&rft_els_id=S030645732200036X&rfr_iscdi=true |