Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features

A catchment is a geographical area from which a business, service or organisation attracts its customers. A catchment area is a common way to ensure equal access to services such as hospitals, schools, libraries, ambulances, fire brigades, and shopping centres. Users will usually go to the service p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing & management 2022-05, Vol.59 (3), p.102922, Article 102922
Hauptverfasser: Adhinugraha, Kiki, Taniar, David, Phan, Thanh, Beare, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 102922
container_title Information processing & management
container_volume 59
creator Adhinugraha, Kiki
Taniar, David
Phan, Thanh
Beare, Richard
description A catchment is a geographical area from which a business, service or organisation attracts its customers. A catchment area is a common way to ensure equal access to services such as hospitals, schools, libraries, ambulances, fire brigades, and shopping centres. Users will usually go to the service provider which is closest to their location instead of going further afield. In a time-sensitive environment where travelling time is limited, an incorrect decision might lead to serious consequences. In ambulance management, an incorrect dispatch that causes a unit late to arrive may lead to life and death situation. In this paper, we propose a Computational Geometry-based approach in determining catchment area, named Time Travel Voronoi Diagram (TTVD), not only by calculating the geographical location as used in most earlier work, but also through predicting the time travel to destination. This method can be used as a predictive analytic tool to support emergency dispatching, such as ambulance services. We utilise road features and the associated speed restrictions from crowdsource map platform in our prediction. Our simulation shows that a realistic catchment can be predicted using time-based distance with road features. •Propose a Computational Geometry approach to predict the time-based catchment area.•Evaluate realistic road obstacles and crowdsource trajectories for realistic estimation model.•Evaluate the model using ambulance stations and road data in metropolitan Melbourne.
doi_str_mv 10.1016/j.ipm.2022.102922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676137570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306457322000462</els_id><sourcerecordid>2676137570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-50265768cc4a7f8d7b00e00cd0cc0b34925de42ac996bc7eab957d6bf2a555623</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAewssYFFytiJ7UasEOUlVYJFYGs5zoS6apJiu0X8Pa7CmtVopHNnrg4hFwymDJi8WU3dppty4DztvOT8gEzYTOWZyBU7JBPIQWaFUPkxOQlhBQCFYHxC_JvHxtno-k8avdnhmkbXIf12cel6ak20yw77SI1HQ7dhz1V7oBrhj8EP_eDo3JlPbzp6VVUf82tq-oZaP3w3Ydh6i7QzG9qiiVuP4YwctWYd8PxvnpL3x4fq_jlbvD693N8tMptzETMBXAolZ9YWRrWzRtUACGAbsBbqvCi5aLDgxpalrK1CU5dCNbJuuRFCSJ6fksvx7sYPX1sMUa9SmT691FwqyXIlFCSKjVSqG4LHVm-864z_0Qz0Xq1e6aRW79XqUW3K3I4ZTPV3Dr0O1mFvk0mPNupmcP-kfwHAHoHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676137570</pqid></control><display><type>article</type><title>Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features</title><source>Elsevier ScienceDirect Journals</source><creator>Adhinugraha, Kiki ; Taniar, David ; Phan, Thanh ; Beare, Richard</creator><creatorcontrib>Adhinugraha, Kiki ; Taniar, David ; Phan, Thanh ; Beare, Richard</creatorcontrib><description>A catchment is a geographical area from which a business, service or organisation attracts its customers. A catchment area is a common way to ensure equal access to services such as hospitals, schools, libraries, ambulances, fire brigades, and shopping centres. Users will usually go to the service provider which is closest to their location instead of going further afield. In a time-sensitive environment where travelling time is limited, an incorrect decision might lead to serious consequences. In ambulance management, an incorrect dispatch that causes a unit late to arrive may lead to life and death situation. In this paper, we propose a Computational Geometry-based approach in determining catchment area, named Time Travel Voronoi Diagram (TTVD), not only by calculating the geographical location as used in most earlier work, but also through predicting the time travel to destination. This method can be used as a predictive analytic tool to support emergency dispatching, such as ambulance services. We utilise road features and the associated speed restrictions from crowdsource map platform in our prediction. Our simulation shows that a realistic catchment can be predicted using time-based distance with road features. •Propose a Computational Geometry approach to predict the time-based catchment area.•Evaluate realistic road obstacles and crowdsource trajectories for realistic estimation model.•Evaluate the model using ambulance stations and road data in metropolitan Melbourne.</description><identifier>ISSN: 0306-4573</identifier><identifier>EISSN: 1873-5371</identifier><identifier>DOI: 10.1016/j.ipm.2022.102922</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ambulance services ; Ambulances ; Computational geometry ; Crowdsource ; Emergency vehicles ; Geographical locations ; Predictions ; Road obstacles ; Services ; Shopping centers ; Simulation ; Speed reduction ; Time travel ; Time Travel Voronoi Diagram ; Travel ; Travel time ; Voronoi graphs</subject><ispartof>Information processing &amp; management, 2022-05, Vol.59 (3), p.102922, Article 102922</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-50265768cc4a7f8d7b00e00cd0cc0b34925de42ac996bc7eab957d6bf2a555623</citedby><cites>FETCH-LOGICAL-c325t-50265768cc4a7f8d7b00e00cd0cc0b34925de42ac996bc7eab957d6bf2a555623</cites><orcidid>0000-0003-3400-6323 ; 0000-0001-5884-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306457322000462$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Adhinugraha, Kiki</creatorcontrib><creatorcontrib>Taniar, David</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Beare, Richard</creatorcontrib><title>Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features</title><title>Information processing &amp; management</title><description>A catchment is a geographical area from which a business, service or organisation attracts its customers. A catchment area is a common way to ensure equal access to services such as hospitals, schools, libraries, ambulances, fire brigades, and shopping centres. Users will usually go to the service provider which is closest to their location instead of going further afield. In a time-sensitive environment where travelling time is limited, an incorrect decision might lead to serious consequences. In ambulance management, an incorrect dispatch that causes a unit late to arrive may lead to life and death situation. In this paper, we propose a Computational Geometry-based approach in determining catchment area, named Time Travel Voronoi Diagram (TTVD), not only by calculating the geographical location as used in most earlier work, but also through predicting the time travel to destination. This method can be used as a predictive analytic tool to support emergency dispatching, such as ambulance services. We utilise road features and the associated speed restrictions from crowdsource map platform in our prediction. Our simulation shows that a realistic catchment can be predicted using time-based distance with road features. •Propose a Computational Geometry approach to predict the time-based catchment area.•Evaluate realistic road obstacles and crowdsource trajectories for realistic estimation model.•Evaluate the model using ambulance stations and road data in metropolitan Melbourne.</description><subject>Ambulance services</subject><subject>Ambulances</subject><subject>Computational geometry</subject><subject>Crowdsource</subject><subject>Emergency vehicles</subject><subject>Geographical locations</subject><subject>Predictions</subject><subject>Road obstacles</subject><subject>Services</subject><subject>Shopping centers</subject><subject>Simulation</subject><subject>Speed reduction</subject><subject>Time travel</subject><subject>Time Travel Voronoi Diagram</subject><subject>Travel</subject><subject>Travel time</subject><subject>Voronoi graphs</subject><issn>0306-4573</issn><issn>1873-5371</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAewssYFFytiJ7UasEOUlVYJFYGs5zoS6apJiu0X8Pa7CmtVopHNnrg4hFwymDJi8WU3dppty4DztvOT8gEzYTOWZyBU7JBPIQWaFUPkxOQlhBQCFYHxC_JvHxtno-k8avdnhmkbXIf12cel6ak20yw77SI1HQ7dhz1V7oBrhj8EP_eDo3JlPbzp6VVUf82tq-oZaP3w3Ydh6i7QzG9qiiVuP4YwctWYd8PxvnpL3x4fq_jlbvD693N8tMptzETMBXAolZ9YWRrWzRtUACGAbsBbqvCi5aLDgxpalrK1CU5dCNbJuuRFCSJ6fksvx7sYPX1sMUa9SmT691FwqyXIlFCSKjVSqG4LHVm-864z_0Qz0Xq1e6aRW79XqUW3K3I4ZTPV3Dr0O1mFvk0mPNupmcP-kfwHAHoHF</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Adhinugraha, Kiki</creator><creator>Taniar, David</creator><creator>Phan, Thanh</creator><creator>Beare, Richard</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0003-3400-6323</orcidid><orcidid>https://orcid.org/0000-0001-5884-1409</orcidid></search><sort><creationdate>202205</creationdate><title>Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features</title><author>Adhinugraha, Kiki ; Taniar, David ; Phan, Thanh ; Beare, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-50265768cc4a7f8d7b00e00cd0cc0b34925de42ac996bc7eab957d6bf2a555623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambulance services</topic><topic>Ambulances</topic><topic>Computational geometry</topic><topic>Crowdsource</topic><topic>Emergency vehicles</topic><topic>Geographical locations</topic><topic>Predictions</topic><topic>Road obstacles</topic><topic>Services</topic><topic>Shopping centers</topic><topic>Simulation</topic><topic>Speed reduction</topic><topic>Time travel</topic><topic>Time Travel Voronoi Diagram</topic><topic>Travel</topic><topic>Travel time</topic><topic>Voronoi graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhinugraha, Kiki</creatorcontrib><creatorcontrib>Taniar, David</creatorcontrib><creatorcontrib>Phan, Thanh</creatorcontrib><creatorcontrib>Beare, Richard</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Information processing &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhinugraha, Kiki</au><au>Taniar, David</au><au>Phan, Thanh</au><au>Beare, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features</atitle><jtitle>Information processing &amp; management</jtitle><date>2022-05</date><risdate>2022</risdate><volume>59</volume><issue>3</issue><spage>102922</spage><pages>102922-</pages><artnum>102922</artnum><issn>0306-4573</issn><eissn>1873-5371</eissn><abstract>A catchment is a geographical area from which a business, service or organisation attracts its customers. A catchment area is a common way to ensure equal access to services such as hospitals, schools, libraries, ambulances, fire brigades, and shopping centres. Users will usually go to the service provider which is closest to their location instead of going further afield. In a time-sensitive environment where travelling time is limited, an incorrect decision might lead to serious consequences. In ambulance management, an incorrect dispatch that causes a unit late to arrive may lead to life and death situation. In this paper, we propose a Computational Geometry-based approach in determining catchment area, named Time Travel Voronoi Diagram (TTVD), not only by calculating the geographical location as used in most earlier work, but also through predicting the time travel to destination. This method can be used as a predictive analytic tool to support emergency dispatching, such as ambulance services. We utilise road features and the associated speed restrictions from crowdsource map platform in our prediction. Our simulation shows that a realistic catchment can be predicted using time-based distance with road features. •Propose a Computational Geometry approach to predict the time-based catchment area.•Evaluate realistic road obstacles and crowdsource trajectories for realistic estimation model.•Evaluate the model using ambulance stations and road data in metropolitan Melbourne.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ipm.2022.102922</doi><orcidid>https://orcid.org/0000-0003-3400-6323</orcidid><orcidid>https://orcid.org/0000-0001-5884-1409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-4573
ispartof Information processing & management, 2022-05, Vol.59 (3), p.102922, Article 102922
issn 0306-4573
1873-5371
language eng
recordid cdi_proquest_journals_2676137570
source Elsevier ScienceDirect Journals
subjects Ambulance services
Ambulances
Computational geometry
Crowdsource
Emergency vehicles
Geographical locations
Predictions
Road obstacles
Services
Shopping centers
Simulation
Speed reduction
Time travel
Time Travel Voronoi Diagram
Travel
Travel time
Voronoi graphs
title Predicting travel time within catchment area using Time Travel Voronoi Diagram (TTVD) and crowdsource map features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20travel%20time%20within%20catchment%20area%20using%20Time%20Travel%20Voronoi%20Diagram%20(TTVD)%20and%20crowdsource%20map%20features&rft.jtitle=Information%20processing%20&%20management&rft.au=Adhinugraha,%20Kiki&rft.date=2022-05&rft.volume=59&rft.issue=3&rft.spage=102922&rft.pages=102922-&rft.artnum=102922&rft.issn=0306-4573&rft.eissn=1873-5371&rft_id=info:doi/10.1016/j.ipm.2022.102922&rft_dat=%3Cproquest_cross%3E2676137570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676137570&rft_id=info:pmid/&rft_els_id=S0306457322000462&rfr_iscdi=true