A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS
Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two mo...
Gespeichert in:
Veröffentlicht in: | Scientific Bulletin. Series C, Electrical Engineering and Computer Science Electrical Engineering and Computer Science, 2022-01 (2), p.251 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 251 |
container_title | Scientific Bulletin. Series C, Electrical Engineering and Computer Science |
container_volume | |
creator | Yu, Hong-zhi Zhu, Deng-yun Wan, Fu-cheng Wu, Tian-tian Ning, Ma |
description | Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2676137548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676137548</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7bfa90223a7a2b5df2c64ace1e8ed5ff9073f946521a7049fc7197ff85600e0a3</originalsourceid><addsrcrecordid>eNotjU1rwjAAQHPYYOL8DwHPhXx_nCSmmQ20FtJ42EnSmsDGmM7q_5-wnR68w3tPYEGIEhXlDL2A1Tx_jIgKIojmfAE2Bjbv2-BrGJztu87taxN9v4em3fXBx6aDWzO4Gj7UYXAB2sYEY6MLfojeDq_guaSvOa_-uQSHNxdtU7X9zlvTVhes6K2SY0kaEUKTTGTkp0ImwdKUcVb5xEvRSNKimeAEJ4mYLpPEWpaiuEAoo0SXYP3XvVzPP_c8346f5_v1-7E8EiEFppIzRX8BVOE-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676137548</pqid></control><display><type>article</type><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</creator><creatorcontrib>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</creatorcontrib><description>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</description><identifier>ISSN: 2286-3540</identifier><language>eng</language><publisher>Bucharest: University Polytechnica of Bucharest</publisher><subject>Algorithms ; Modules ; Recommender systems</subject><ispartof>Scientific Bulletin. Series C, Electrical Engineering and Computer Science, 2022-01 (2), p.251</ispartof><rights>Copyright University Polytechnica of Bucharest 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yu, Hong-zhi</creatorcontrib><creatorcontrib>Zhu, Deng-yun</creatorcontrib><creatorcontrib>Wan, Fu-cheng</creatorcontrib><creatorcontrib>Wu, Tian-tian</creatorcontrib><creatorcontrib>Ning, Ma</creatorcontrib><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><title>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</title><description>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</description><subject>Algorithms</subject><subject>Modules</subject><subject>Recommender systems</subject><issn>2286-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjU1rwjAAQHPYYOL8DwHPhXx_nCSmmQ20FtJ42EnSmsDGmM7q_5-wnR68w3tPYEGIEhXlDL2A1Tx_jIgKIojmfAE2Bjbv2-BrGJztu87taxN9v4em3fXBx6aDWzO4Gj7UYXAB2sYEY6MLfojeDq_guaSvOa_-uQSHNxdtU7X9zlvTVhes6K2SY0kaEUKTTGTkp0ImwdKUcVb5xEvRSNKimeAEJ4mYLpPEWpaiuEAoo0SXYP3XvVzPP_c8346f5_v1-7E8EiEFppIzRX8BVOE-ng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yu, Hong-zhi</creator><creator>Zhu, Deng-yun</creator><creator>Wan, Fu-cheng</creator><creator>Wu, Tian-tian</creator><creator>Ning, Ma</creator><general>University Polytechnica of Bucharest</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><author>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7bfa90223a7a2b5df2c64ace1e8ed5ff9073f946521a7049fc7197ff85600e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Modules</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hong-zhi</creatorcontrib><creatorcontrib>Zhu, Deng-yun</creatorcontrib><creatorcontrib>Wan, Fu-cheng</creatorcontrib><creatorcontrib>Wu, Tian-tian</creatorcontrib><creatorcontrib>Ning, Ma</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hong-zhi</au><au>Zhu, Deng-yun</au><au>Wan, Fu-cheng</au><au>Wu, Tian-tian</au><au>Ning, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</atitle><jtitle>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</jtitle><date>2022-01-01</date><risdate>2022</risdate><issue>2</issue><spage>251</spage><pages>251-</pages><issn>2286-3540</issn><abstract>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</abstract><cop>Bucharest</cop><pub>University Polytechnica of Bucharest</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2286-3540 |
ispartof | Scientific Bulletin. Series C, Electrical Engineering and Computer Science, 2022-01 (2), p.251 |
issn | 2286-3540 |
language | eng |
recordid | cdi_proquest_journals_2676137548 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Modules Recommender systems |
title | A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HYBRID%20RECOMMENDATION%20ALGORITHM%20BASED%20ON%20USER%20CHARACTERISTICS&rft.jtitle=Scientific%20Bulletin.%20Series%20C,%20Electrical%20Engineering%20and%20Computer%20Science&rft.au=Yu,%20Hong-zhi&rft.date=2022-01-01&rft.issue=2&rft.spage=251&rft.pages=251-&rft.issn=2286-3540&rft_id=info:doi/&rft_dat=%3Cproquest%3E2676137548%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676137548&rft_id=info:pmid/&rfr_iscdi=true |