A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS

Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific Bulletin. Series C, Electrical Engineering and Computer Science Electrical Engineering and Computer Science, 2022-01 (2), p.251
Hauptverfasser: Yu, Hong-zhi, Zhu, Deng-yun, Wan, Fu-cheng, Wu, Tian-tian, Ning, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 251
container_title Scientific Bulletin. Series C, Electrical Engineering and Computer Science
container_volume
creator Yu, Hong-zhi
Zhu, Deng-yun
Wan, Fu-cheng
Wu, Tian-tian
Ning, Ma
description Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2676137548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676137548</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-7bfa90223a7a2b5df2c64ace1e8ed5ff9073f946521a7049fc7197ff85600e0a3</originalsourceid><addsrcrecordid>eNotjU1rwjAAQHPYYOL8DwHPhXx_nCSmmQ20FtJ42EnSmsDGmM7q_5-wnR68w3tPYEGIEhXlDL2A1Tx_jIgKIojmfAE2Bjbv2-BrGJztu87taxN9v4em3fXBx6aDWzO4Gj7UYXAB2sYEY6MLfojeDq_guaSvOa_-uQSHNxdtU7X9zlvTVhes6K2SY0kaEUKTTGTkp0ImwdKUcVb5xEvRSNKimeAEJ4mYLpPEWpaiuEAoo0SXYP3XvVzPP_c8346f5_v1-7E8EiEFppIzRX8BVOE-ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676137548</pqid></control><display><type>article</type><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</creator><creatorcontrib>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</creatorcontrib><description>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</description><identifier>ISSN: 2286-3540</identifier><language>eng</language><publisher>Bucharest: University Polytechnica of Bucharest</publisher><subject>Algorithms ; Modules ; Recommender systems</subject><ispartof>Scientific Bulletin. Series C, Electrical Engineering and Computer Science, 2022-01 (2), p.251</ispartof><rights>Copyright University Polytechnica of Bucharest 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yu, Hong-zhi</creatorcontrib><creatorcontrib>Zhu, Deng-yun</creatorcontrib><creatorcontrib>Wan, Fu-cheng</creatorcontrib><creatorcontrib>Wu, Tian-tian</creatorcontrib><creatorcontrib>Ning, Ma</creatorcontrib><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><title>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</title><description>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</description><subject>Algorithms</subject><subject>Modules</subject><subject>Recommender systems</subject><issn>2286-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjU1rwjAAQHPYYOL8DwHPhXx_nCSmmQ20FtJ42EnSmsDGmM7q_5-wnR68w3tPYEGIEhXlDL2A1Tx_jIgKIojmfAE2Bjbv2-BrGJztu87taxN9v4em3fXBx6aDWzO4Gj7UYXAB2sYEY6MLfojeDq_guaSvOa_-uQSHNxdtU7X9zlvTVhes6K2SY0kaEUKTTGTkp0ImwdKUcVb5xEvRSNKimeAEJ4mYLpPEWpaiuEAoo0SXYP3XvVzPP_c8346f5_v1-7E8EiEFppIzRX8BVOE-ng</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yu, Hong-zhi</creator><creator>Zhu, Deng-yun</creator><creator>Wan, Fu-cheng</creator><creator>Wu, Tian-tian</creator><creator>Ning, Ma</creator><general>University Polytechnica of Bucharest</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20220101</creationdate><title>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</title><author>Yu, Hong-zhi ; Zhu, Deng-yun ; Wan, Fu-cheng ; Wu, Tian-tian ; Ning, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-7bfa90223a7a2b5df2c64ace1e8ed5ff9073f946521a7049fc7197ff85600e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Modules</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hong-zhi</creatorcontrib><creatorcontrib>Zhu, Deng-yun</creatorcontrib><creatorcontrib>Wan, Fu-cheng</creatorcontrib><creatorcontrib>Wu, Tian-tian</creatorcontrib><creatorcontrib>Ning, Ma</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hong-zhi</au><au>Zhu, Deng-yun</au><au>Wan, Fu-cheng</au><au>Wu, Tian-tian</au><au>Ning, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS</atitle><jtitle>Scientific Bulletin. Series C, Electrical Engineering and Computer Science</jtitle><date>2022-01-01</date><risdate>2022</risdate><issue>2</issue><spage>251</spage><pages>251-</pages><issn>2286-3540</issn><abstract>Shop recommendation system is an important part of the e-commerce recommendation system. Shop recommendation system in this paper mainly consist of three steps. First, constructed matrix decomposition module and deep network module for tackling scores data and comment data, and then connected two modules by weight factor, trained by the same loss function, at last the comprehensive score is output by scoring prediction, analyzing fusion factor for the effect of algorithm through the preprocessed text and the parameter setup fusion model. Each experiment adopts the five-fold crossover verification method, and the prediction accuracy of this algorithm compared with other five different algorithms. Experimental results verify that the UFFSR algorithm can effectively improve the accuracy of prediction scoring and alleviate the data sparsity and cold start problems to a certain extent.</abstract><cop>Bucharest</cop><pub>University Polytechnica of Bucharest</pub></addata></record>
fulltext fulltext
identifier ISSN: 2286-3540
ispartof Scientific Bulletin. Series C, Electrical Engineering and Computer Science, 2022-01 (2), p.251
issn 2286-3540
language eng
recordid cdi_proquest_journals_2676137548
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Modules
Recommender systems
title A HYBRID RECOMMENDATION ALGORITHM BASED ON USER CHARACTERISTICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20HYBRID%20RECOMMENDATION%20ALGORITHM%20BASED%20ON%20USER%20CHARACTERISTICS&rft.jtitle=Scientific%20Bulletin.%20Series%20C,%20Electrical%20Engineering%20and%20Computer%20Science&rft.au=Yu,%20Hong-zhi&rft.date=2022-01-01&rft.issue=2&rft.spage=251&rft.pages=251-&rft.issn=2286-3540&rft_id=info:doi/&rft_dat=%3Cproquest%3E2676137548%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676137548&rft_id=info:pmid/&rfr_iscdi=true