Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces

Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface win...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2021-10, Vol.149 (10), p.3243-3264
Hauptverfasser: Lee, Temple R., Buban, Michael, Meyers, Tilden P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3264
container_issue 10
container_start_page 3243
container_title Monthly weather review
container_volume 149
creator Lee, Temple R.
Buban, Michael
Meyers, Tilden P.
description Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity ( u * ), sensible heat flux ( H ), and latent heat flux ( E ) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H , particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.
doi_str_mv 10.1175/MWR-D-21-0047.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676136061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676136061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-bf956c697f8dc20adee7c5452ec95952cfbb28e797c7222a1eee53098ec187ef3</originalsourceid><addsrcrecordid>eNo1kN9LwzAUhYMoOKfPvhZ8zpakTdI8zs05YaJMxceQpTfa2TU1aUH962398XIPXD7OgQ-hc0omlEo-vX3e4AVmFBOSyQk9QCPKGcEkU-khGhHCJCYiy47RSYw7QogQGRshM2uaqrSmLX2deJdcdtVbsintqwlF7F_3Jpg9tBDKrx8mDtBDF5yxkCyr7gNi0vpkNSD-BWrwXUzWpi7-oXiKjpypIpz95Rg9La8e5yu8vru-mc_W2DKhWrx1igsrlHR5YRkxBYC0POMMrOKKM-u2W5aDVNJKxpihAMBTonKwNJfg0jG6-O1tgn_vILZ657tQ95OaCSloKkh_xmj6S9ngYwzgdBPKvQmfmhI9eNS9R73QjOrBo6bpNzyMZ24</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676136061</pqid></control><display><type>article</type><title>Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lee, Temple R. ; Buban, Michael ; Meyers, Tilden P.</creator><creatorcontrib>Lee, Temple R. ; Buban, Michael ; Meyers, Tilden P.</creatorcontrib><description>Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity ( u * ), sensible heat flux ( H ), and latent heat flux ( E ) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H , particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-21-0047.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric models ; Coefficients ; Datasets ; Enthalpy ; Heat flux ; Heat transfer ; Heterogeneity ; Latent heat ; Latent heat flux ; Moisture effects ; Moisture gradient ; Motivation ; Numerical prediction ; Numerical weather forecasting ; Sensible heat ; Sensible heat flux ; Sensible heat transfer ; Similarity theory ; Surface fluxes ; Surface wind ; Temperature ; Tornadoes ; Weather forecasting</subject><ispartof>Monthly weather review, 2021-10, Vol.149 (10), p.3243-3264</ispartof><rights>Copyright American Meteorological Society Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-bf956c697f8dc20adee7c5452ec95952cfbb28e797c7222a1eee53098ec187ef3</citedby><cites>FETCH-LOGICAL-c269t-bf956c697f8dc20adee7c5452ec95952cfbb28e797c7222a1eee53098ec187ef3</cites><orcidid>0000-0001-5388-6325</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3680,27923,27924</link.rule.ids></links><search><creatorcontrib>Lee, Temple R.</creatorcontrib><creatorcontrib>Buban, Michael</creatorcontrib><creatorcontrib>Meyers, Tilden P.</creatorcontrib><title>Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces</title><title>Monthly weather review</title><description>Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity ( u * ), sensible heat flux ( H ), and latent heat flux ( E ) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H , particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.</description><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Coefficients</subject><subject>Datasets</subject><subject>Enthalpy</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heterogeneity</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>Moisture effects</subject><subject>Moisture gradient</subject><subject>Motivation</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Sensible heat</subject><subject>Sensible heat flux</subject><subject>Sensible heat transfer</subject><subject>Similarity theory</subject><subject>Surface fluxes</subject><subject>Surface wind</subject><subject>Temperature</subject><subject>Tornadoes</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1kN9LwzAUhYMoOKfPvhZ8zpakTdI8zs05YaJMxceQpTfa2TU1aUH962398XIPXD7OgQ-hc0omlEo-vX3e4AVmFBOSyQk9QCPKGcEkU-khGhHCJCYiy47RSYw7QogQGRshM2uaqrSmLX2deJdcdtVbsintqwlF7F_3Jpg9tBDKrx8mDtBDF5yxkCyr7gNi0vpkNSD-BWrwXUzWpi7-oXiKjpypIpz95Rg9La8e5yu8vru-mc_W2DKhWrx1igsrlHR5YRkxBYC0POMMrOKKM-u2W5aDVNJKxpihAMBTonKwNJfg0jG6-O1tgn_vILZ657tQ95OaCSloKkh_xmj6S9ngYwzgdBPKvQmfmhI9eNS9R73QjOrBo6bpNzyMZ24</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Lee, Temple R.</creator><creator>Buban, Michael</creator><creator>Meyers, Tilden P.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5388-6325</orcidid></search><sort><creationdate>202110</creationdate><title>Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces</title><author>Lee, Temple R. ; Buban, Michael ; Meyers, Tilden P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-bf956c697f8dc20adee7c5452ec95952cfbb28e797c7222a1eee53098ec187ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Coefficients</topic><topic>Datasets</topic><topic>Enthalpy</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heterogeneity</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>Moisture effects</topic><topic>Moisture gradient</topic><topic>Motivation</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Sensible heat</topic><topic>Sensible heat flux</topic><topic>Sensible heat transfer</topic><topic>Similarity theory</topic><topic>Surface fluxes</topic><topic>Surface wind</topic><topic>Temperature</topic><topic>Tornadoes</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Temple R.</creatorcontrib><creatorcontrib>Buban, Michael</creatorcontrib><creatorcontrib>Meyers, Tilden P.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Temple R.</au><au>Buban, Michael</au><au>Meyers, Tilden P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces</atitle><jtitle>Monthly weather review</jtitle><date>2021-10</date><risdate>2021</risdate><volume>149</volume><issue>10</issue><spage>3243</spage><epage>3264</epage><pages>3243-3264</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity ( u * ), sensible heat flux ( H ), and latent heat flux ( E ) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H , particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-21-0047.1</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-5388-6325</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2021-10, Vol.149 (10), p.3243-3264
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_2676136061
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric models
Coefficients
Datasets
Enthalpy
Heat flux
Heat transfer
Heterogeneity
Latent heat
Latent heat flux
Moisture effects
Moisture gradient
Motivation
Numerical prediction
Numerical weather forecasting
Sensible heat
Sensible heat flux
Sensible heat transfer
Similarity theory
Surface fluxes
Surface wind
Temperature
Tornadoes
Weather forecasting
title Application of Bulk Richardson Parameterizations of Surface Fluxes to Heterogeneous Land Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Bulk%20Richardson%20Parameterizations%20of%20Surface%20Fluxes%20to%20Heterogeneous%20Land%20Surfaces&rft.jtitle=Monthly%20weather%20review&rft.au=Lee,%20Temple%20R.&rft.date=2021-10&rft.volume=149&rft.issue=10&rft.spage=3243&rft.epage=3264&rft.pages=3243-3264&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-21-0047.1&rft_dat=%3Cproquest_cross%3E2676136061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676136061&rft_id=info:pmid/&rfr_iscdi=true