Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System

The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched on June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from Taiwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2021-07, Vol.149 (7), p.2171
Hauptverfasser: Lien, Guo-Yuan, Lin, Chung-Han, Huang, Zih-Mao, Teng, Wen-Hsin, Chen, Jen-Her, Lin, Ching-Chieh, Ho, Hsu-Hui, Huang, Jyun-Ying, Hong, Jing-Shan, Cheng, Chia-Ping, Huang, Ching-Yuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2171
container_title Monthly weather review
container_volume 149
creator Lien, Guo-Yuan
Lin, Chung-Han
Huang, Zih-Mao
Teng, Wen-Hsin
Chen, Jen-Her
Lin, Ching-Chieh
Ho, Hsu-Hui
Huang, Jyun-Ying
Hong, Jing-Shan
Cheng, Chia-Ping
Huang, Ching-Yuang
description The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched on June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from Taiwan Analysis Center for COSMIC. With the global numerical prediction system at CWB, a parallel semi-operational experiment assimilating the FORMOSAT-7/COSMIC-2 bending angle data with all other operational observation data has been conducted to evaluate the impact of the FORMOSAT-7/COSMIC-2 data. The first seven-month results show that the quality of the early FORMOSAT-7/COSMIC-2 data has been satisfactory for assimilation. Consistent and significant positive impacts on global forecast skills have been observed since the start of the parallel experiment, with the most significant impact found in the tropical region, reflecting the low-inclination orbital design of the satellites. The impact of the FORMOSAT-7/COSMIC-2 RO data is also estimated using the Ensemble Forecast Sensitivity to Observation Impact (EFSOI) method, showing an average positive impact per observation similar to other existing GNSS RO datasets, while the total impact is impressive by virtue of its large amount. Sensitivity experiments suggest that the quality control processes built in the Gridpoint Statistical Interpolation (GSI) system for RO data work well to achieve a positive impact by the low-level FORMOSAT-7/COSMIC-2 RO data, while more effort on observation error tuning should be focused to obtain an optimal assimilation performance. This study demonstrates the usefulness of the FORMOSAT-7/COSMIC-2 RO data in global numerical weather prediction during the calibration/validation period and leads to the operational use of the data at CWB.
doi_str_mv 10.1175/MWR-D-20-0267.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2676129882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676129882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-bd4d00e37836c8f88ceb37750fad4dee65c2807e7293c92a9bc8f96eb0720f8b3</originalsourceid><addsrcrecordid>eNotkF1rwjAUhsPYYM7tereBXUdP0zZJL139mKArWIeXIY0pq7TWJRHxbn9jf2-_ZBV3dTic57wvPAg9BzAIAh4Pl5sVGRMKBCjjg-AG9YL4skVJeIt6AJQTYFF0jx6c2wEAYxHtodPIuaqpauWrdo_nzUFpj9sST5Stz3iarZZZPloTPkyzfDlPCcWz9zzHK7WtWpxpfaz99XWsvMKnyn_itapOav_7_eNwunnFs7otVI2nrTVaOY_zs_OmeUR3paqdefqfffQxnazTN7LIZvN0tCCaRuBJsY22ACbkImRalEJoU4Scx1Cq7mIMizUVwA2nSagTqpKioxJmCuAUSlGEffRyzT3Y9utonJe79mj3XaXsNLGAJkLQjhpeKW1b56wp5cFWjbJnGYC82JWdXTmWFOTFrgzCP7DYbII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676129882</pqid></control><display><type>article</type><title>Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System</title><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><source>AMS Journals (Meteorology)</source><creator>Lien, Guo-Yuan ; Lin, Chung-Han ; Huang, Zih-Mao ; Teng, Wen-Hsin ; Chen, Jen-Her ; Lin, Ching-Chieh ; Ho, Hsu-Hui ; Huang, Jyun-Ying ; Hong, Jing-Shan ; Cheng, Chia-Ping ; Huang, Ching-Yuang</creator><creatorcontrib>Lien, Guo-Yuan ; Lin, Chung-Han ; Huang, Zih-Mao ; Teng, Wen-Hsin ; Chen, Jen-Her ; Lin, Ching-Chieh ; Ho, Hsu-Hui ; Huang, Jyun-Ying ; Hong, Jing-Shan ; Cheng, Chia-Ping ; Huang, Ching-Yuang</creatorcontrib><description>The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched on June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from Taiwan Analysis Center for COSMIC. With the global numerical prediction system at CWB, a parallel semi-operational experiment assimilating the FORMOSAT-7/COSMIC-2 bending angle data with all other operational observation data has been conducted to evaluate the impact of the FORMOSAT-7/COSMIC-2 data. The first seven-month results show that the quality of the early FORMOSAT-7/COSMIC-2 data has been satisfactory for assimilation. Consistent and significant positive impacts on global forecast skills have been observed since the start of the parallel experiment, with the most significant impact found in the tropical region, reflecting the low-inclination orbital design of the satellites. The impact of the FORMOSAT-7/COSMIC-2 RO data is also estimated using the Ensemble Forecast Sensitivity to Observation Impact (EFSOI) method, showing an average positive impact per observation similar to other existing GNSS RO datasets, while the total impact is impressive by virtue of its large amount. Sensitivity experiments suggest that the quality control processes built in the Gridpoint Statistical Interpolation (GSI) system for RO data work well to achieve a positive impact by the low-level FORMOSAT-7/COSMIC-2 RO data, while more effort on observation error tuning should be focused to obtain an optimal assimilation performance. This study demonstrates the usefulness of the FORMOSAT-7/COSMIC-2 RO data in global numerical weather prediction during the calibration/validation period and leads to the operational use of the data at CWB.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-20-0267.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Algorithms ; Assimilation ; Cyclones ; Data assimilation ; Data collection ; Deformation ; Ensemble forecasting ; Global navigation satellite system ; Global positioning systems ; Global weather ; GPS ; Interpolation ; Navigation ; Navigation satellites ; Navigation systems ; Navigational satellites ; Numerical prediction ; Numerical weather forecasting ; Orbits ; Quality control ; Radio ; Radio occultation ; Rain ; Real time ; Satellite constellations ; Satellite observation ; Satellites ; Sensitivity ; Tropical climate ; Tropical environment ; Tropical environments ; Weather forecasting</subject><ispartof>Monthly weather review, 2021-07, Vol.149 (7), p.2171</ispartof><rights>Copyright American Meteorological Society Jul 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c240t-bd4d00e37836c8f88ceb37750fad4dee65c2807e7293c92a9bc8f96eb0720f8b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Lien, Guo-Yuan</creatorcontrib><creatorcontrib>Lin, Chung-Han</creatorcontrib><creatorcontrib>Huang, Zih-Mao</creatorcontrib><creatorcontrib>Teng, Wen-Hsin</creatorcontrib><creatorcontrib>Chen, Jen-Her</creatorcontrib><creatorcontrib>Lin, Ching-Chieh</creatorcontrib><creatorcontrib>Ho, Hsu-Hui</creatorcontrib><creatorcontrib>Huang, Jyun-Ying</creatorcontrib><creatorcontrib>Hong, Jing-Shan</creatorcontrib><creatorcontrib>Cheng, Chia-Ping</creatorcontrib><creatorcontrib>Huang, Ching-Yuang</creatorcontrib><title>Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System</title><title>Monthly weather review</title><description>The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched on June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from Taiwan Analysis Center for COSMIC. With the global numerical prediction system at CWB, a parallel semi-operational experiment assimilating the FORMOSAT-7/COSMIC-2 bending angle data with all other operational observation data has been conducted to evaluate the impact of the FORMOSAT-7/COSMIC-2 data. The first seven-month results show that the quality of the early FORMOSAT-7/COSMIC-2 data has been satisfactory for assimilation. Consistent and significant positive impacts on global forecast skills have been observed since the start of the parallel experiment, with the most significant impact found in the tropical region, reflecting the low-inclination orbital design of the satellites. The impact of the FORMOSAT-7/COSMIC-2 RO data is also estimated using the Ensemble Forecast Sensitivity to Observation Impact (EFSOI) method, showing an average positive impact per observation similar to other existing GNSS RO datasets, while the total impact is impressive by virtue of its large amount. Sensitivity experiments suggest that the quality control processes built in the Gridpoint Statistical Interpolation (GSI) system for RO data work well to achieve a positive impact by the low-level FORMOSAT-7/COSMIC-2 RO data, while more effort on observation error tuning should be focused to obtain an optimal assimilation performance. This study demonstrates the usefulness of the FORMOSAT-7/COSMIC-2 RO data in global numerical weather prediction during the calibration/validation period and leads to the operational use of the data at CWB.</description><subject>Algorithms</subject><subject>Assimilation</subject><subject>Cyclones</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Deformation</subject><subject>Ensemble forecasting</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>Global weather</subject><subject>GPS</subject><subject>Interpolation</subject><subject>Navigation</subject><subject>Navigation satellites</subject><subject>Navigation systems</subject><subject>Navigational satellites</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Orbits</subject><subject>Quality control</subject><subject>Radio</subject><subject>Radio occultation</subject><subject>Rain</subject><subject>Real time</subject><subject>Satellite constellations</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sensitivity</subject><subject>Tropical climate</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Weather forecasting</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkF1rwjAUhsPYYM7tereBXUdP0zZJL139mKArWIeXIY0pq7TWJRHxbn9jf2-_ZBV3dTic57wvPAg9BzAIAh4Pl5sVGRMKBCjjg-AG9YL4skVJeIt6AJQTYFF0jx6c2wEAYxHtodPIuaqpauWrdo_nzUFpj9sST5Stz3iarZZZPloTPkyzfDlPCcWz9zzHK7WtWpxpfaz99XWsvMKnyn_itapOav_7_eNwunnFs7otVI2nrTVaOY_zs_OmeUR3paqdefqfffQxnazTN7LIZvN0tCCaRuBJsY22ACbkImRalEJoU4Scx1Cq7mIMizUVwA2nSagTqpKioxJmCuAUSlGEffRyzT3Y9utonJe79mj3XaXsNLGAJkLQjhpeKW1b56wp5cFWjbJnGYC82JWdXTmWFOTFrgzCP7DYbII</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Lien, Guo-Yuan</creator><creator>Lin, Chung-Han</creator><creator>Huang, Zih-Mao</creator><creator>Teng, Wen-Hsin</creator><creator>Chen, Jen-Her</creator><creator>Lin, Ching-Chieh</creator><creator>Ho, Hsu-Hui</creator><creator>Huang, Jyun-Ying</creator><creator>Hong, Jing-Shan</creator><creator>Cheng, Chia-Ping</creator><creator>Huang, Ching-Yuang</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20210701</creationdate><title>Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System</title><author>Lien, Guo-Yuan ; Lin, Chung-Han ; Huang, Zih-Mao ; Teng, Wen-Hsin ; Chen, Jen-Her ; Lin, Ching-Chieh ; Ho, Hsu-Hui ; Huang, Jyun-Ying ; Hong, Jing-Shan ; Cheng, Chia-Ping ; Huang, Ching-Yuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-bd4d00e37836c8f88ceb37750fad4dee65c2807e7293c92a9bc8f96eb0720f8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Assimilation</topic><topic>Cyclones</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Deformation</topic><topic>Ensemble forecasting</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>Global weather</topic><topic>GPS</topic><topic>Interpolation</topic><topic>Navigation</topic><topic>Navigation satellites</topic><topic>Navigation systems</topic><topic>Navigational satellites</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Orbits</topic><topic>Quality control</topic><topic>Radio</topic><topic>Radio occultation</topic><topic>Rain</topic><topic>Real time</topic><topic>Satellite constellations</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sensitivity</topic><topic>Tropical climate</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lien, Guo-Yuan</creatorcontrib><creatorcontrib>Lin, Chung-Han</creatorcontrib><creatorcontrib>Huang, Zih-Mao</creatorcontrib><creatorcontrib>Teng, Wen-Hsin</creatorcontrib><creatorcontrib>Chen, Jen-Her</creatorcontrib><creatorcontrib>Lin, Ching-Chieh</creatorcontrib><creatorcontrib>Ho, Hsu-Hui</creatorcontrib><creatorcontrib>Huang, Jyun-Ying</creatorcontrib><creatorcontrib>Hong, Jing-Shan</creatorcontrib><creatorcontrib>Cheng, Chia-Ping</creatorcontrib><creatorcontrib>Huang, Ching-Yuang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lien, Guo-Yuan</au><au>Lin, Chung-Han</au><au>Huang, Zih-Mao</au><au>Teng, Wen-Hsin</au><au>Chen, Jen-Her</au><au>Lin, Ching-Chieh</au><au>Ho, Hsu-Hui</au><au>Huang, Jyun-Ying</au><au>Hong, Jing-Shan</au><au>Cheng, Chia-Ping</au><au>Huang, Ching-Yuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System</atitle><jtitle>Monthly weather review</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>149</volume><issue>7</issue><spage>2171</spage><pages>2171-</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>The FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) Radio Occultation (RO) satellite constellation was launched on June 2019 as a successor of the FORMOSAT-3/COSMIC mission. The Central Weather Bureau (CWB) of Taiwan has received FORMOSAT-7/COSMIC-2 GNSS RO data in real time from Taiwan Analysis Center for COSMIC. With the global numerical prediction system at CWB, a parallel semi-operational experiment assimilating the FORMOSAT-7/COSMIC-2 bending angle data with all other operational observation data has been conducted to evaluate the impact of the FORMOSAT-7/COSMIC-2 data. The first seven-month results show that the quality of the early FORMOSAT-7/COSMIC-2 data has been satisfactory for assimilation. Consistent and significant positive impacts on global forecast skills have been observed since the start of the parallel experiment, with the most significant impact found in the tropical region, reflecting the low-inclination orbital design of the satellites. The impact of the FORMOSAT-7/COSMIC-2 RO data is also estimated using the Ensemble Forecast Sensitivity to Observation Impact (EFSOI) method, showing an average positive impact per observation similar to other existing GNSS RO datasets, while the total impact is impressive by virtue of its large amount. Sensitivity experiments suggest that the quality control processes built in the Gridpoint Statistical Interpolation (GSI) system for RO data work well to achieve a positive impact by the low-level FORMOSAT-7/COSMIC-2 RO data, while more effort on observation error tuning should be focused to obtain an optimal assimilation performance. This study demonstrates the usefulness of the FORMOSAT-7/COSMIC-2 RO data in global numerical weather prediction during the calibration/validation period and leads to the operational use of the data at CWB.</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-20-0267.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2021-07, Vol.149 (7), p.2171
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_2676129882
source Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection; AMS Journals (Meteorology)
subjects Algorithms
Assimilation
Cyclones
Data assimilation
Data collection
Deformation
Ensemble forecasting
Global navigation satellite system
Global positioning systems
Global weather
GPS
Interpolation
Navigation
Navigation satellites
Navigation systems
Navigational satellites
Numerical prediction
Numerical weather forecasting
Orbits
Quality control
Radio
Radio occultation
Rain
Real time
Satellite constellations
Satellite observation
Satellites
Sensitivity
Tropical climate
Tropical environment
Tropical environments
Weather forecasting
title Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assimilation%20Impact%20of%20Early%20FORMOSAT-7/COSMIC-2%20GNSS%20Radio%20Occultation%20Data%20with%20Taiwan%E2%80%99s%20CWB%20Global%20Forecast%20System&rft.jtitle=Monthly%20weather%20review&rft.au=Lien,%20Guo-Yuan&rft.date=2021-07-01&rft.volume=149&rft.issue=7&rft.spage=2171&rft.pages=2171-&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-20-0267.1&rft_dat=%3Cproquest_cross%3E2676129882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676129882&rft_id=info:pmid/&rfr_iscdi=true