Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning
Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat ra...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2021-06, Vol.22 (6), p.1591-1608 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1608 |
---|---|
container_issue | 6 |
container_start_page | 1591 |
container_title | Journal of hydrometeorology |
container_volume | 22 |
creator | Ehsani, Mohammad Reza Behrangi, Ali Adhikari, Abishek Song, Yang Huffman, George J. Adler, Robert F. Bolvin, David T. Nelkin, Eric J. |
description | Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because 1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; 2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and 3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records. |
doi_str_mv | 10.1175/JHM-D-20-0240.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2675955058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27074489</jstor_id><sourcerecordid>27074489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-d4d6a7429b16a750708137bae2a9b3b87f25c4589e572a73184b4a8f9a1a0f553</originalsourceid><addsrcrecordid>eNo9UE1v1DAQjRBIlMKZC0iWuMAhdOzY6-S42gJbtBXSllbcrEky6XqVtVvbKeqv4C_Xq6Ce3mjel_SK4j2Hr5xrdfZzfVmelwJKEDK_XhQnXAlVaiX5y-db_XldvIlxDwCy4fVJ8W8ZI8V4IJeYH1jaEVv2D-g66tkNhUe2trc7tqXoxylZ79gWe-sPlCiwz8ub9Xb7hQ0-sCvn_w44jlmagqUHHJl1s3mDyaapp8iuo3W3bDX6qb_CxND17BK7nXXENoTBZfZt8SrHRHr3H0-L6-_ffq_W5ebXj4vVclN2lapS2ct-gVqKpuUZFWioeaVbJIFNW7W1HoTqpKobUlqgrngtW4n10CBHGJSqTotPc-5d8PcTxWT2fgouVxqx0KpRClSdVWezqgs-xkCDuQv2gOHRcDDH1U1e3ZwbAea4uuHZ8WF2OIxoXAo5DwQHEAvQx9qPM72PyYfnNKFBS1k31RPrHIc2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675955058</pqid></control><display><type>article</type><title>Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>NASA Technical Reports Server</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Ehsani, Mohammad Reza ; Behrangi, Ali ; Adhikari, Abishek ; Song, Yang ; Huffman, George J. ; Adler, Robert F. ; Bolvin, David T. ; Nelkin, Eric J.</creator><creatorcontrib>Ehsani, Mohammad Reza ; Behrangi, Ali ; Adhikari, Abishek ; Song, Yang ; Huffman, George J. ; Adler, Robert F. ; Bolvin, David T. ; Nelkin, Eric J.</creatorcontrib><description>Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because 1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; 2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and 3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-20-0240.1</identifier><language>eng</language><publisher>Goddard Space Flight Center: American Meteorological Society</publisher><subject>Advanced Very High Resolution Radiometer ; Algorithms ; Atmospheric Infrared Sounder ; Brightness temperature ; Climate ; Earth Resources And Remote Sensing ; Global precipitation ; High resolution ; Latitude ; Learning algorithms ; Long-term records ; Machine learning ; Meteorological satellites ; Microwave sensors ; Precipitation ; Probability theory ; Radar ; Radiometers ; Resolution ; Retrieval ; Sensors ; Snow ; Snow and ice ; Snowfall ; Statistical analysis ; Surface radiation temperature ; Work platforms</subject><ispartof>Journal of hydrometeorology, 2021-06, Vol.22 (6), p.1591-1608</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright American Meteorological Society Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-d4d6a7429b16a750708137bae2a9b3b87f25c4589e572a73184b4a8f9a1a0f553</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27074489$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27074489$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,796,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Ehsani, Mohammad Reza</creatorcontrib><creatorcontrib>Behrangi, Ali</creatorcontrib><creatorcontrib>Adhikari, Abishek</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huffman, George J.</creatorcontrib><creatorcontrib>Adler, Robert F.</creatorcontrib><creatorcontrib>Bolvin, David T.</creatorcontrib><creatorcontrib>Nelkin, Eric J.</creatorcontrib><title>Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning</title><title>Journal of hydrometeorology</title><description>Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because 1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; 2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and 3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records.</description><subject>Advanced Very High Resolution Radiometer</subject><subject>Algorithms</subject><subject>Atmospheric Infrared Sounder</subject><subject>Brightness temperature</subject><subject>Climate</subject><subject>Earth Resources And Remote Sensing</subject><subject>Global precipitation</subject><subject>High resolution</subject><subject>Latitude</subject><subject>Learning algorithms</subject><subject>Long-term records</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Microwave sensors</subject><subject>Precipitation</subject><subject>Probability theory</subject><subject>Radar</subject><subject>Radiometers</subject><subject>Resolution</subject><subject>Retrieval</subject><subject>Sensors</subject><subject>Snow</subject><subject>Snow and ice</subject><subject>Snowfall</subject><subject>Statistical analysis</subject><subject>Surface radiation temperature</subject><subject>Work platforms</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>BENPR</sourceid><recordid>eNo9UE1v1DAQjRBIlMKZC0iWuMAhdOzY6-S42gJbtBXSllbcrEky6XqVtVvbKeqv4C_Xq6Ce3mjel_SK4j2Hr5xrdfZzfVmelwJKEDK_XhQnXAlVaiX5y-db_XldvIlxDwCy4fVJ8W8ZI8V4IJeYH1jaEVv2D-g66tkNhUe2trc7tqXoxylZ79gWe-sPlCiwz8ub9Xb7hQ0-sCvn_w44jlmagqUHHJl1s3mDyaapp8iuo3W3bDX6qb_CxND17BK7nXXENoTBZfZt8SrHRHr3H0-L6-_ffq_W5ebXj4vVclN2lapS2ct-gVqKpuUZFWioeaVbJIFNW7W1HoTqpKobUlqgrngtW4n10CBHGJSqTotPc-5d8PcTxWT2fgouVxqx0KpRClSdVWezqgs-xkCDuQv2gOHRcDDH1U1e3ZwbAea4uuHZ8WF2OIxoXAo5DwQHEAvQx9qPM72PyYfnNKFBS1k31RPrHIc2</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ehsani, Mohammad Reza</creator><creator>Behrangi, Ali</creator><creator>Adhikari, Abishek</creator><creator>Song, Yang</creator><creator>Huffman, George J.</creator><creator>Adler, Robert F.</creator><creator>Bolvin, David T.</creator><creator>Nelkin, Eric J.</creator><general>American Meteorological Society</general><general>AMS</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning</title><author>Ehsani, Mohammad Reza ; Behrangi, Ali ; Adhikari, Abishek ; Song, Yang ; Huffman, George J. ; Adler, Robert F. ; Bolvin, David T. ; Nelkin, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-d4d6a7429b16a750708137bae2a9b3b87f25c4589e572a73184b4a8f9a1a0f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Advanced Very High Resolution Radiometer</topic><topic>Algorithms</topic><topic>Atmospheric Infrared Sounder</topic><topic>Brightness temperature</topic><topic>Climate</topic><topic>Earth Resources And Remote Sensing</topic><topic>Global precipitation</topic><topic>High resolution</topic><topic>Latitude</topic><topic>Learning algorithms</topic><topic>Long-term records</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Microwave sensors</topic><topic>Precipitation</topic><topic>Probability theory</topic><topic>Radar</topic><topic>Radiometers</topic><topic>Resolution</topic><topic>Retrieval</topic><topic>Sensors</topic><topic>Snow</topic><topic>Snow and ice</topic><topic>Snowfall</topic><topic>Statistical analysis</topic><topic>Surface radiation temperature</topic><topic>Work platforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ehsani, Mohammad Reza</creatorcontrib><creatorcontrib>Behrangi, Ali</creatorcontrib><creatorcontrib>Adhikari, Abishek</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huffman, George J.</creatorcontrib><creatorcontrib>Adler, Robert F.</creatorcontrib><creatorcontrib>Bolvin, David T.</creatorcontrib><creatorcontrib>Nelkin, Eric J.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ehsani, Mohammad Reza</au><au>Behrangi, Ali</au><au>Adhikari, Abishek</au><au>Song, Yang</au><au>Huffman, George J.</au><au>Adler, Robert F.</au><au>Bolvin, David T.</au><au>Nelkin, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>1591</spage><epage>1608</epage><pages>1591-1608</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because 1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; 2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and 3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records.</abstract><cop>Goddard Space Flight Center</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-20-0240.1</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2021-06, Vol.22 (6), p.1591-1608 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_proquest_journals_2675955058 |
source | Jstor Complete Legacy; American Meteorological Society; NASA Technical Reports Server; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Advanced Very High Resolution Radiometer Algorithms Atmospheric Infrared Sounder Brightness temperature Climate Earth Resources And Remote Sensing Global precipitation High resolution Latitude Learning algorithms Long-term records Machine learning Meteorological satellites Microwave sensors Precipitation Probability theory Radar Radiometers Resolution Retrieval Sensors Snow Snow and ice Snowfall Statistical analysis Surface radiation temperature Work platforms |
title | Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20Advanced%20Very%20High%20Resolution%20Radiometer%20(AVHRR)%20for%20Snowfall%20Retrieval%20in%20High%20Latitudes%20Using%20CloudSat%20and%20Machine%20Learning&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Ehsani,%20Mohammad%20Reza&rft.date=2021-06-01&rft.volume=22&rft.issue=6&rft.spage=1591&rft.epage=1608&rft.pages=1591-1608&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-20-0240.1&rft_dat=%3Cjstor_proqu%3E27074489%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675955058&rft_id=info:pmid/&rft_jstor_id=27074489&rfr_iscdi=true |