A new ridge‐type estimator for the linear regression model with correlated regressors
The ridge‐type regression estimators are frequently being used to address multicollinearity in the linear regression model due to the inefficiency of the famous ordinary least squares estimator. The ridge‐type regression estimator can be in one or two‐parameter form. This paper proposes another ridg...
Gespeichert in:
Veröffentlicht in: | Concurrency and computation 2022-07, Vol.34 (15), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Concurrency and computation |
container_volume | 34 |
creator | Owolabi, Abiola T. Ayinde, Kayode Alabi, Olusegun O. |
description | The ridge‐type regression estimators are frequently being used to address multicollinearity in the linear regression model due to the inefficiency of the famous ordinary least squares estimator. The ridge‐type regression estimator can be in one or two‐parameter form. This paper proposes another ridge‐type estimator, a two‐parameter ridge‐type estimator, and establishes its statistical properties theoretically and through Monte Carlo simulation studies. Two different biasing parameters (k1d1 and k2d2) were considered for the proposed and compared with six other existing estimators. Results of Monte Carlo simulation studies show the dominance of the proposed method over some existing ones using the mean squared criterion. In addition, the proposed dominated the existing estimators when applied to real‐life datasets using mean squared error and cross‐validation as the criterion. |
doi_str_mv | 10.1002/cpe.6933 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675876768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675876768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-9db518755ec75144d0430b748afb045683ca3b8ae22d92cb481efed05e1059843</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwTcuJma3_lZllJ_oKALxWXIJHfaKdPJmEwZuvMRfEafxNSqOxeXexcf555zELqkZEIJYTemg0lacH6ERlRylpCUi-O_m6Wn6CyENSGUEk5H6HWKWxiwr-0SPt8_-l0HGEJfb3TvPK7i9CvATd2C9tjD0kMItWvxxllo8FD3K2yc99DoHuwv4Hw4RyeVbgJc_OwxermdP8_uk8Xj3cNsukgMiyaTwpaS5pmUYDJJhbBEcFJmItdVSYRMc240L3MNjNmCmVLkFCqwRAIlssgFH6Org27n3ds2Oldrt_VtfKlYmsk8S7MoMkbXB8p4F4KHSnU-RvQ7RYna16ZibWpfW0STAzrUDez-5dTsaf7NfwFst28f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675876768</pqid></control><display><type>article</type><title>A new ridge‐type estimator for the linear regression model with correlated regressors</title><source>Access via Wiley Online Library</source><creator>Owolabi, Abiola T. ; Ayinde, Kayode ; Alabi, Olusegun O.</creator><creatorcontrib>Owolabi, Abiola T. ; Ayinde, Kayode ; Alabi, Olusegun O.</creatorcontrib><description>The ridge‐type regression estimators are frequently being used to address multicollinearity in the linear regression model due to the inefficiency of the famous ordinary least squares estimator. The ridge‐type regression estimator can be in one or two‐parameter form. This paper proposes another ridge‐type estimator, a two‐parameter ridge‐type estimator, and establishes its statistical properties theoretically and through Monte Carlo simulation studies. Two different biasing parameters (k1d1 and k2d2) were considered for the proposed and compared with six other existing estimators. Results of Monte Carlo simulation studies show the dominance of the proposed method over some existing ones using the mean squared criterion. In addition, the proposed dominated the existing estimators when applied to real‐life datasets using mean squared error and cross‐validation as the criterion.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.6933</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Criteria ; Estimators ; mean square error ; Monte Carlo simulation ; multicollinearity ; ordinary least square estimator ; Parameters ; Regression models ; ridge‐type estimator ; Statistical analysis</subject><ispartof>Concurrency and computation, 2022-07, Vol.34 (15), p.n/a</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-9db518755ec75144d0430b748afb045683ca3b8ae22d92cb481efed05e1059843</citedby><cites>FETCH-LOGICAL-c2933-9db518755ec75144d0430b748afb045683ca3b8ae22d92cb481efed05e1059843</cites><orcidid>0000-0001-9843-5085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.6933$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.6933$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Owolabi, Abiola T.</creatorcontrib><creatorcontrib>Ayinde, Kayode</creatorcontrib><creatorcontrib>Alabi, Olusegun O.</creatorcontrib><title>A new ridge‐type estimator for the linear regression model with correlated regressors</title><title>Concurrency and computation</title><description>The ridge‐type regression estimators are frequently being used to address multicollinearity in the linear regression model due to the inefficiency of the famous ordinary least squares estimator. The ridge‐type regression estimator can be in one or two‐parameter form. This paper proposes another ridge‐type estimator, a two‐parameter ridge‐type estimator, and establishes its statistical properties theoretically and through Monte Carlo simulation studies. Two different biasing parameters (k1d1 and k2d2) were considered for the proposed and compared with six other existing estimators. Results of Monte Carlo simulation studies show the dominance of the proposed method over some existing ones using the mean squared criterion. In addition, the proposed dominated the existing estimators when applied to real‐life datasets using mean squared error and cross‐validation as the criterion.</description><subject>Criteria</subject><subject>Estimators</subject><subject>mean square error</subject><subject>Monte Carlo simulation</subject><subject>multicollinearity</subject><subject>ordinary least square estimator</subject><subject>Parameters</subject><subject>Regression models</subject><subject>ridge‐type estimator</subject><subject>Statistical analysis</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwTcuJma3_lZllJ_oKALxWXIJHfaKdPJmEwZuvMRfEafxNSqOxeXexcf555zELqkZEIJYTemg0lacH6ERlRylpCUi-O_m6Wn6CyENSGUEk5H6HWKWxiwr-0SPt8_-l0HGEJfb3TvPK7i9CvATd2C9tjD0kMItWvxxllo8FD3K2yc99DoHuwv4Hw4RyeVbgJc_OwxermdP8_uk8Xj3cNsukgMiyaTwpaS5pmUYDJJhbBEcFJmItdVSYRMc240L3MNjNmCmVLkFCqwRAIlssgFH6Org27n3ds2Oldrt_VtfKlYmsk8S7MoMkbXB8p4F4KHSnU-RvQ7RYna16ZibWpfW0STAzrUDez-5dTsaf7NfwFst28f</recordid><startdate>20220710</startdate><enddate>20220710</enddate><creator>Owolabi, Abiola T.</creator><creator>Ayinde, Kayode</creator><creator>Alabi, Olusegun O.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9843-5085</orcidid></search><sort><creationdate>20220710</creationdate><title>A new ridge‐type estimator for the linear regression model with correlated regressors</title><author>Owolabi, Abiola T. ; Ayinde, Kayode ; Alabi, Olusegun O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-9db518755ec75144d0430b748afb045683ca3b8ae22d92cb481efed05e1059843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Criteria</topic><topic>Estimators</topic><topic>mean square error</topic><topic>Monte Carlo simulation</topic><topic>multicollinearity</topic><topic>ordinary least square estimator</topic><topic>Parameters</topic><topic>Regression models</topic><topic>ridge‐type estimator</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owolabi, Abiola T.</creatorcontrib><creatorcontrib>Ayinde, Kayode</creatorcontrib><creatorcontrib>Alabi, Olusegun O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owolabi, Abiola T.</au><au>Ayinde, Kayode</au><au>Alabi, Olusegun O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new ridge‐type estimator for the linear regression model with correlated regressors</atitle><jtitle>Concurrency and computation</jtitle><date>2022-07-10</date><risdate>2022</risdate><volume>34</volume><issue>15</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>The ridge‐type regression estimators are frequently being used to address multicollinearity in the linear regression model due to the inefficiency of the famous ordinary least squares estimator. The ridge‐type regression estimator can be in one or two‐parameter form. This paper proposes another ridge‐type estimator, a two‐parameter ridge‐type estimator, and establishes its statistical properties theoretically and through Monte Carlo simulation studies. Two different biasing parameters (k1d1 and k2d2) were considered for the proposed and compared with six other existing estimators. Results of Monte Carlo simulation studies show the dominance of the proposed method over some existing ones using the mean squared criterion. In addition, the proposed dominated the existing estimators when applied to real‐life datasets using mean squared error and cross‐validation as the criterion.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/cpe.6933</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9843-5085</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-0626 |
ispartof | Concurrency and computation, 2022-07, Vol.34 (15), p.n/a |
issn | 1532-0626 1532-0634 |
language | eng |
recordid | cdi_proquest_journals_2675876768 |
source | Access via Wiley Online Library |
subjects | Criteria Estimators mean square error Monte Carlo simulation multicollinearity ordinary least square estimator Parameters Regression models ridge‐type estimator Statistical analysis |
title | A new ridge‐type estimator for the linear regression model with correlated regressors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20ridge%E2%80%90type%20estimator%20for%20the%20linear%20regression%20model%20with%20correlated%20regressors&rft.jtitle=Concurrency%20and%20computation&rft.au=Owolabi,%20Abiola%20T.&rft.date=2022-07-10&rft.volume=34&rft.issue=15&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.6933&rft_dat=%3Cproquest_cross%3E2675876768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675876768&rft_id=info:pmid/&rfr_iscdi=true |