An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model

Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2022-06, Vol.38 (Suppl 2), p.1705-1716
Hauptverfasser: Akram, Tayyaba, Abbas, Muhammad, Abualnaja, Khadijah M., Iqbal, Azhar, Majeed, Abdul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue Suppl 2
container_start_page 1705
container_title Engineering with computers
container_volume 38
creator Akram, Tayyaba
Abbas, Muhammad
Abualnaja, Khadijah M.
Iqbal, Azhar
Majeed, Abdul
description Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDEs. For that purpose, reliable and effective techniques are required for solving FDEs. Our objective is to generalize the collocation method for solving time fractional Black–Scholes European option pricing model using the extended cubic B-spline. The key feature of the strategy is that it turns these type of problems into a system of algebraic equations which can be appropriate for computer programming. This is not only streamlines the problems but speed up the computations as well. The Fourier stability and convergence analysis of the scheme are examined. A proposed numerical scheme having second-order accuracy via spatial direction is also constructed. The numerical and graphical results indicate that the suggested approach for the European option prices agree well with the analytical solutions.
doi_str_mv 10.1007/s00366-021-01436-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675827911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675827911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9309e2db24891db5b80ae8e998e85ed440c7c53e95ade1fa4b9acd720e2e5f293</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoOD5-wFXAdbSS9CtLFV8guFDXIZ2udqI9yZh0i-70G_xDv8ToCO5cVRV176XqELLH4YAD1IcJQFYVA8EZ8EJWjK-RWW5KVlaVXCcz4HXNoKrqTbKV0gMAlwBqRt6PPMW-d9ahH6mfFhidNQMd0c69e5qQtiZhR4On4xwpvozouzzbqXWWHrO0HJxH2k_eji74RPsQaQrDs_P3dHSLvIrmZ5VDjwdjHz_fPm7sPAyY6CJ0OOyQjd4MCXd_6za5Ozu9PblgV9fnlydHV8xKrkamJCgUXSuKRvGuLdsGDDaoVINNiV1RgK1tKVGVpkPem6JVxna1ABRY9kLJbbK_yl3GkP9Ko34IU8xnJS2qumxErTjPKrFS2RhSitjrZXQLE181B_2NWq9Q64xa_6DW3ya5MqUs9vcY_6L_cX0B71GEng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675827911</pqid></control><display><type>article</type><title>An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akram, Tayyaba ; Abbas, Muhammad ; Abualnaja, Khadijah M. ; Iqbal, Azhar ; Majeed, Abdul</creator><creatorcontrib>Akram, Tayyaba ; Abbas, Muhammad ; Abualnaja, Khadijah M. ; Iqbal, Azhar ; Majeed, Abdul</creatorcontrib><description>Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDEs. For that purpose, reliable and effective techniques are required for solving FDEs. Our objective is to generalize the collocation method for solving time fractional Black–Scholes European option pricing model using the extended cubic B-spline. The key feature of the strategy is that it turns these type of problems into a system of algebraic equations which can be appropriate for computer programming. This is not only streamlines the problems but speed up the computations as well. The Fourier stability and convergence analysis of the scheme are examined. A proposed numerical scheme having second-order accuracy via spatial direction is also constructed. The numerical and graphical results indicate that the suggested approach for the European option prices agree well with the analytical solutions.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-021-01436-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Approximation ; B spline functions ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Collocation methods ; Computer programming ; Computer Science ; Computer-Aided Engineering (CAD ; Computers ; Control ; Differential equations ; Exact solutions ; Fractional calculus ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Mathematics ; Original Article ; Partial differential equations ; Securities prices ; Stability analysis ; Systems Theory</subject><ispartof>Engineering with computers, 2022-06, Vol.38 (Suppl 2), p.1705-1716</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9309e2db24891db5b80ae8e998e85ed440c7c53e95ade1fa4b9acd720e2e5f293</citedby><cites>FETCH-LOGICAL-c319t-9309e2db24891db5b80ae8e998e85ed440c7c53e95ade1fa4b9acd720e2e5f293</cites><orcidid>0000-0002-0491-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-021-01436-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-021-01436-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Akram, Tayyaba</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Abualnaja, Khadijah M.</creatorcontrib><creatorcontrib>Iqbal, Azhar</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><title>An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDEs. For that purpose, reliable and effective techniques are required for solving FDEs. Our objective is to generalize the collocation method for solving time fractional Black–Scholes European option pricing model using the extended cubic B-spline. The key feature of the strategy is that it turns these type of problems into a system of algebraic equations which can be appropriate for computer programming. This is not only streamlines the problems but speed up the computations as well. The Fourier stability and convergence analysis of the scheme are examined. A proposed numerical scheme having second-order accuracy via spatial direction is also constructed. The numerical and graphical results indicate that the suggested approach for the European option prices agree well with the analytical solutions.</description><subject>Approximation</subject><subject>B spline functions</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Collocation methods</subject><subject>Computer programming</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Computers</subject><subject>Control</subject><subject>Differential equations</subject><subject>Exact solutions</subject><subject>Fractional calculus</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Original Article</subject><subject>Partial differential equations</subject><subject>Securities prices</subject><subject>Stability analysis</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKBDEQRYMoOD5-wFXAdbSS9CtLFV8guFDXIZ2udqI9yZh0i-70G_xDv8ToCO5cVRV176XqELLH4YAD1IcJQFYVA8EZ8EJWjK-RWW5KVlaVXCcz4HXNoKrqTbKV0gMAlwBqRt6PPMW-d9ahH6mfFhidNQMd0c69e5qQtiZhR4On4xwpvozouzzbqXWWHrO0HJxH2k_eji74RPsQaQrDs_P3dHSLvIrmZ5VDjwdjHz_fPm7sPAyY6CJ0OOyQjd4MCXd_6za5Ozu9PblgV9fnlydHV8xKrkamJCgUXSuKRvGuLdsGDDaoVINNiV1RgK1tKVGVpkPem6JVxna1ABRY9kLJbbK_yl3GkP9Ko34IU8xnJS2qumxErTjPKrFS2RhSitjrZXQLE181B_2NWq9Q64xa_6DW3ya5MqUs9vcY_6L_cX0B71GEng</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Akram, Tayyaba</creator><creator>Abbas, Muhammad</creator><creator>Abualnaja, Khadijah M.</creator><creator>Iqbal, Azhar</creator><creator>Majeed, Abdul</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid></search><sort><creationdate>20220601</creationdate><title>An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model</title><author>Akram, Tayyaba ; Abbas, Muhammad ; Abualnaja, Khadijah M. ; Iqbal, Azhar ; Majeed, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9309e2db24891db5b80ae8e998e85ed440c7c53e95ade1fa4b9acd720e2e5f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>B spline functions</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Collocation methods</topic><topic>Computer programming</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Computers</topic><topic>Control</topic><topic>Differential equations</topic><topic>Exact solutions</topic><topic>Fractional calculus</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Original Article</topic><topic>Partial differential equations</topic><topic>Securities prices</topic><topic>Stability analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Tayyaba</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Abualnaja, Khadijah M.</creatorcontrib><creatorcontrib>Iqbal, Azhar</creatorcontrib><creatorcontrib>Majeed, Abdul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Tayyaba</au><au>Abbas, Muhammad</au><au>Abualnaja, Khadijah M.</au><au>Iqbal, Azhar</au><au>Majeed, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>38</volume><issue>Suppl 2</issue><spage>1705</spage><epage>1716</epage><pages>1705-1716</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>Financial theory could introduce a fractional differential equation (FDE) that presents new theoretical research concepts, methods and practical implementations. Due to the memory factor of fractional derivatives, physical pathways with storage and inherited properties can be best represented by FDEs. For that purpose, reliable and effective techniques are required for solving FDEs. Our objective is to generalize the collocation method for solving time fractional Black–Scholes European option pricing model using the extended cubic B-spline. The key feature of the strategy is that it turns these type of problems into a system of algebraic equations which can be appropriate for computer programming. This is not only streamlines the problems but speed up the computations as well. The Fourier stability and convergence analysis of the scheme are examined. A proposed numerical scheme having second-order accuracy via spatial direction is also constructed. The numerical and graphical results indicate that the suggested approach for the European option prices agree well with the analytical solutions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-021-01436-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2022-06, Vol.38 (Suppl 2), p.1705-1716
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2675827911
source SpringerLink Journals - AutoHoldings
subjects Approximation
B spline functions
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Collocation methods
Computer programming
Computer Science
Computer-Aided Engineering (CAD
Computers
Control
Differential equations
Exact solutions
Fractional calculus
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Mathematics
Original Article
Partial differential equations
Securities prices
Stability analysis
Systems Theory
title An efficient numerical technique based on the extended cubic B-spline functions for solving time fractional Black–Scholes model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A45%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20numerical%20technique%20based%20on%20the%20extended%20cubic%20B-spline%20functions%20for%20solving%20time%20fractional%20Black%E2%80%93Scholes%20model&rft.jtitle=Engineering%20with%20computers&rft.au=Akram,%20Tayyaba&rft.date=2022-06-01&rft.volume=38&rft.issue=Suppl%202&rft.spage=1705&rft.epage=1716&rft.pages=1705-1716&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-021-01436-1&rft_dat=%3Cproquest_cross%3E2675827911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675827911&rft_id=info:pmid/&rfr_iscdi=true