Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV

This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2022-05, Vol.359 (8), p.3671-3691
Hauptverfasser: Dou, Liqian, Cai, Siyuan, Zhang, Xiuyun, Su, Xiaotong, Zhang, Ruilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3691
container_issue 8
container_start_page 3671
container_title Journal of the Franklin Institute
container_volume 359
creator Dou, Liqian
Cai, Siyuan
Zhang, Xiuyun
Su, Xiaotong
Zhang, Ruilong
description This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.
doi_str_mv 10.1016/j.jfranklin.2022.02.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675697524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003222001491</els_id><sourcerecordid>2675697524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4GCz535qNp18cx5gcIvjhfQ9rclNQ2mUk62L83ZeKrcOFy4Jxzzz0I3RO8IpiUj_2q117ar8HYFcWUrnAaVlygBVlXdU7Lml2iBU7UHGNGr9FNCH2CFcF4geTuCDbm0ZuuAw8qb2QAlUklD9EcIVMnK0fTZgfvOi_H0dgu085nyoSkaaaYyAmPMhpns9bZ6N2QOZ2N0xBNvt983qIrLYcAd797ifZPu4_tS_72_vy63bzlLa1YzDlfF0DbQhPFOG80qQuqKGsUVgXGBSdNzeoSQBEKGub8wBpJa64xV8A4W6KHs2-K-j1BiKJ3k7fppKBlxcu64rRIrOrMar0LwYMWB29G6U-CYDH3KXrx16eY-xQ4DZuVm7MS0hNHA16E1oBtQRkPbRTKmX89fgCBwYQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675697524</pqid></control><display><type>article</type><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><source>Elsevier ScienceDirect Journals</source><creator>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</creator><creatorcontrib>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</creatorcontrib><description>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2022.02.034</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Adaptive control ; Algorithms ; Attitude control ; Control systems ; Control systems design ; Controllers ; Cost function ; Dynamic programming ; Finite element analysis ; Neural networks ; Tracking control ; Unmanned aerial vehicles ; Unmanned helicopters</subject><ispartof>Journal of the Franklin Institute, 2022-05, Vol.359 (8), p.3671-3691</ispartof><rights>2022 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</citedby><cites>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</cites><orcidid>0000-0001-5309-6147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2022.02.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Dou, Liqian</creatorcontrib><creatorcontrib>Cai, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Su, Xiaotong</creatorcontrib><creatorcontrib>Zhang, Ruilong</creatorcontrib><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><title>Journal of the Franklin Institute</title><description>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Attitude control</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>Finite element analysis</subject><subject>Neural networks</subject><subject>Tracking control</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4GCz535qNp18cx5gcIvjhfQ9rclNQ2mUk62L83ZeKrcOFy4Jxzzz0I3RO8IpiUj_2q117ar8HYFcWUrnAaVlygBVlXdU7Lml2iBU7UHGNGr9FNCH2CFcF4geTuCDbm0ZuuAw8qb2QAlUklD9EcIVMnK0fTZgfvOi_H0dgu085nyoSkaaaYyAmPMhpns9bZ6N2QOZ2N0xBNvt983qIrLYcAd797ifZPu4_tS_72_vy63bzlLa1YzDlfF0DbQhPFOG80qQuqKGsUVgXGBSdNzeoSQBEKGub8wBpJa64xV8A4W6KHs2-K-j1BiKJ3k7fppKBlxcu64rRIrOrMar0LwYMWB29G6U-CYDH3KXrx16eY-xQ4DZuVm7MS0hNHA16E1oBtQRkPbRTKmX89fgCBwYQO</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Dou, Liqian</creator><creator>Cai, Siyuan</creator><creator>Zhang, Xiuyun</creator><creator>Su, Xiaotong</creator><creator>Zhang, Ruilong</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5309-6147</orcidid></search><sort><creationdate>202205</creationdate><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><author>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Attitude control</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>Finite element analysis</topic><topic>Neural networks</topic><topic>Tracking control</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Liqian</creatorcontrib><creatorcontrib>Cai, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Su, Xiaotong</creatorcontrib><creatorcontrib>Zhang, Ruilong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Liqian</au><au>Cai, Siyuan</au><au>Zhang, Xiuyun</au><au>Su, Xiaotong</au><au>Zhang, Ruilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2022-05</date><risdate>2022</risdate><volume>359</volume><issue>8</issue><spage>3671</spage><epage>3691</epage><pages>3671-3691</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2022.02.034</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5309-6147</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2022-05, Vol.359 (8), p.3671-3691
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2675697524
source Elsevier ScienceDirect Journals
subjects Adaptive control
Algorithms
Attitude control
Control systems
Control systems design
Controllers
Cost function
Dynamic programming
Finite element analysis
Neural networks
Tracking control
Unmanned aerial vehicles
Unmanned helicopters
title Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-triggered-based%20adaptive%20dynamic%20programming%20for%20distributed%20formation%20control%20of%20multi-UAV&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Dou,%20Liqian&rft.date=2022-05&rft.volume=359&rft.issue=8&rft.spage=3671&rft.epage=3691&rft.pages=3671-3691&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2022.02.034&rft_dat=%3Cproquest_cross%3E2675697524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675697524&rft_id=info:pmid/&rft_els_id=S0016003222001491&rfr_iscdi=true