Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV
This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The c...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2022-05, Vol.359 (8), p.3671-3691 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3691 |
---|---|
container_issue | 8 |
container_start_page | 3671 |
container_title | Journal of the Franklin Institute |
container_volume | 359 |
creator | Dou, Liqian Cai, Siyuan Zhang, Xiuyun Su, Xiaotong Zhang, Ruilong |
description | This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification. |
doi_str_mv | 10.1016/j.jfranklin.2022.02.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675697524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003222001491</els_id><sourcerecordid>2675697524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</originalsourceid><addsrcrecordid>eNqFUF1LwzAUDaLgnP4GCz535qNp18cx5gcIvjhfQ9rclNQ2mUk62L83ZeKrcOFy4Jxzzz0I3RO8IpiUj_2q117ar8HYFcWUrnAaVlygBVlXdU7Lml2iBU7UHGNGr9FNCH2CFcF4geTuCDbm0ZuuAw8qb2QAlUklD9EcIVMnK0fTZgfvOi_H0dgu085nyoSkaaaYyAmPMhpns9bZ6N2QOZ2N0xBNvt983qIrLYcAd797ifZPu4_tS_72_vy63bzlLa1YzDlfF0DbQhPFOG80qQuqKGsUVgXGBSdNzeoSQBEKGub8wBpJa64xV8A4W6KHs2-K-j1BiKJ3k7fppKBlxcu64rRIrOrMar0LwYMWB29G6U-CYDH3KXrx16eY-xQ4DZuVm7MS0hNHA16E1oBtQRkPbRTKmX89fgCBwYQO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675697524</pqid></control><display><type>article</type><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><source>Elsevier ScienceDirect Journals</source><creator>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</creator><creatorcontrib>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</creatorcontrib><description>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2022.02.034</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Adaptive control ; Algorithms ; Attitude control ; Control systems ; Control systems design ; Controllers ; Cost function ; Dynamic programming ; Finite element analysis ; Neural networks ; Tracking control ; Unmanned aerial vehicles ; Unmanned helicopters</subject><ispartof>Journal of the Franklin Institute, 2022-05, Vol.359 (8), p.3671-3691</ispartof><rights>2022 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. May 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</citedby><cites>FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</cites><orcidid>0000-0001-5309-6147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2022.02.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Dou, Liqian</creatorcontrib><creatorcontrib>Cai, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Su, Xiaotong</creatorcontrib><creatorcontrib>Zhang, Ruilong</creatorcontrib><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><title>Journal of the Franklin Institute</title><description>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Attitude control</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>Finite element analysis</subject><subject>Neural networks</subject><subject>Tracking control</subject><subject>Unmanned aerial vehicles</subject><subject>Unmanned helicopters</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFUF1LwzAUDaLgnP4GCz535qNp18cx5gcIvjhfQ9rclNQ2mUk62L83ZeKrcOFy4Jxzzz0I3RO8IpiUj_2q117ar8HYFcWUrnAaVlygBVlXdU7Lml2iBU7UHGNGr9FNCH2CFcF4geTuCDbm0ZuuAw8qb2QAlUklD9EcIVMnK0fTZgfvOi_H0dgu085nyoSkaaaYyAmPMhpns9bZ6N2QOZ2N0xBNvt983qIrLYcAd797ifZPu4_tS_72_vy63bzlLa1YzDlfF0DbQhPFOG80qQuqKGsUVgXGBSdNzeoSQBEKGub8wBpJa64xV8A4W6KHs2-K-j1BiKJ3k7fppKBlxcu64rRIrOrMar0LwYMWB29G6U-CYDH3KXrx16eY-xQ4DZuVm7MS0hNHA16E1oBtQRkPbRTKmX89fgCBwYQO</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Dou, Liqian</creator><creator>Cai, Siyuan</creator><creator>Zhang, Xiuyun</creator><creator>Su, Xiaotong</creator><creator>Zhang, Ruilong</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5309-6147</orcidid></search><sort><creationdate>202205</creationdate><title>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</title><author>Dou, Liqian ; Cai, Siyuan ; Zhang, Xiuyun ; Su, Xiaotong ; Zhang, Ruilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-5584e2c4f1d355bf1942d23bd0d400451b9396eed12efe0017e3ba295f05de353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Attitude control</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>Finite element analysis</topic><topic>Neural networks</topic><topic>Tracking control</topic><topic>Unmanned aerial vehicles</topic><topic>Unmanned helicopters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Liqian</creatorcontrib><creatorcontrib>Cai, Siyuan</creatorcontrib><creatorcontrib>Zhang, Xiuyun</creatorcontrib><creatorcontrib>Su, Xiaotong</creatorcontrib><creatorcontrib>Zhang, Ruilong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Liqian</au><au>Cai, Siyuan</au><au>Zhang, Xiuyun</au><au>Su, Xiaotong</au><au>Zhang, Ruilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2022-05</date><risdate>2022</risdate><volume>359</volume><issue>8</issue><spage>3671</spage><epage>3691</epage><pages>3671-3691</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2022.02.034</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5309-6147</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2022-05, Vol.359 (8), p.3671-3691 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2675697524 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive control Algorithms Attitude control Control systems Control systems design Controllers Cost function Dynamic programming Finite element analysis Neural networks Tracking control Unmanned aerial vehicles Unmanned helicopters |
title | Event-triggered-based adaptive dynamic programming for distributed formation control of multi-UAV |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A47%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-triggered-based%20adaptive%20dynamic%20programming%20for%20distributed%20formation%20control%20of%20multi-UAV&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Dou,%20Liqian&rft.date=2022-05&rft.volume=359&rft.issue=8&rft.spage=3671&rft.epage=3691&rft.pages=3671-3691&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2022.02.034&rft_dat=%3Cproquest_cross%3E2675697524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675697524&rft_id=info:pmid/&rft_els_id=S0016003222001491&rfr_iscdi=true |