A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates

When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern cli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2021-07, Vol.34 (14), p.5723-5740
Hauptverfasser: Dutta, Deepashree, Sherwood, Steven C., Meissner, Katrin J., Gupta, Alex Sen, Lunt, Daniel J., Tourte, Gregory J. L., Colman, Robert, Narsey, Sugata, Fuchs, David, Brown, Josephine R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5740
container_issue 14
container_start_page 5723
container_title Journal of climate
container_volume 34
creator Dutta, Deepashree
Sherwood, Steven C.
Meissner, Katrin J.
Gupta, Alex Sen
Lunt, Daniel J.
Tourte, Gregory J. L.
Colman, Robert
Narsey, Sugata
Fuchs, David
Brown, Josephine R.
description When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO₂ or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.
doi_str_mv 10.1175/JCLI-D-20-0354.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2675668204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27076912</jstor_id><sourcerecordid>27076912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-93c669132b33e45baa187b859433d3ef84cf07c8576061977702b1228730d35b3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEmW5c0GyxDllbMdLjlHKUtSKC4ijlbhO6yqJg51W4t-TqIjTaDTfm3nzELojMCdE8se3YrVMFgmFBBhP5-QMzQifujSl52gGKksTJTm_RFcx7gEIFQAztMvx-tAMrvUb2-Bld7RxcNtycL7Dvsb50PrY72xwBq-t2ZWdi23EtQ94EdzRdVucBzOM07ztG1c7c5K6Dn-VobUBF41ry8HGG3RRl020t3_1Gn0-P30Ur8nq_WVZ5KvE0IwNScaMEBlhtGLMprwqS6JkpXiWMrZhtlapqUEaxaUAQTIpJdCKUKokgw3jFbtGD6e9ffDfh_EbvfeH0I0nNRWSC6EopCMFJ8oEH2Owte7D6DP8aAJ6ylNPeeqFpqCnPDUZJfcnyT4OPvzzVIIcDVP2C6OOcZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675668204</pqid></control><display><type>article</type><title>A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Dutta, Deepashree ; Sherwood, Steven C. ; Meissner, Katrin J. ; Gupta, Alex Sen ; Lunt, Daniel J. ; Tourte, Gregory J. L. ; Colman, Robert ; Narsey, Sugata ; Fuchs, David ; Brown, Josephine R.</creator><creatorcontrib>Dutta, Deepashree ; Sherwood, Steven C. ; Meissner, Katrin J. ; Gupta, Alex Sen ; Lunt, Daniel J. ; Tourte, Gregory J. L. ; Colman, Robert ; Narsey, Sugata ; Fuchs, David ; Brown, Josephine R.</creatorcontrib><description>When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO₂ or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-20-0354.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Amplification ; Arctic climates ; Arctic clouds ; Atmospheric models ; Carbon dioxide ; Clouds ; Cretaceous ; Energy transport ; General circulation models ; Heat ; Heat transport ; Ice removal ; Intercomparison ; Latent heat ; Long wave radiation ; Modelling ; Ocean models ; Ocean temperature ; Ocean warming ; Oceans ; Paleogene ; Radiation ; Reduction ; Sea ice ; Static energy ; Surface temperature ; Tropical climate ; Warm climates</subject><ispartof>Journal of climate, 2021-07, Vol.34 (14), p.5723-5740</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-93c669132b33e45baa187b859433d3ef84cf07c8576061977702b1228730d35b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27076912$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27076912$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Dutta, Deepashree</creatorcontrib><creatorcontrib>Sherwood, Steven C.</creatorcontrib><creatorcontrib>Meissner, Katrin J.</creatorcontrib><creatorcontrib>Gupta, Alex Sen</creatorcontrib><creatorcontrib>Lunt, Daniel J.</creatorcontrib><creatorcontrib>Tourte, Gregory J. L.</creatorcontrib><creatorcontrib>Colman, Robert</creatorcontrib><creatorcontrib>Narsey, Sugata</creatorcontrib><creatorcontrib>Fuchs, David</creatorcontrib><creatorcontrib>Brown, Josephine R.</creatorcontrib><title>A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates</title><title>Journal of climate</title><description>When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO₂ or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.</description><subject>Amplification</subject><subject>Arctic climates</subject><subject>Arctic clouds</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Clouds</subject><subject>Cretaceous</subject><subject>Energy transport</subject><subject>General circulation models</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Ice removal</subject><subject>Intercomparison</subject><subject>Latent heat</subject><subject>Long wave radiation</subject><subject>Modelling</subject><subject>Ocean models</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceans</subject><subject>Paleogene</subject><subject>Radiation</subject><subject>Reduction</subject><subject>Sea ice</subject><subject>Static energy</subject><subject>Surface temperature</subject><subject>Tropical climate</subject><subject>Warm climates</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQhS0EEmW5c0GyxDllbMdLjlHKUtSKC4ijlbhO6yqJg51W4t-TqIjTaDTfm3nzELojMCdE8se3YrVMFgmFBBhP5-QMzQifujSl52gGKksTJTm_RFcx7gEIFQAztMvx-tAMrvUb2-Bld7RxcNtycL7Dvsb50PrY72xwBq-t2ZWdi23EtQ94EdzRdVucBzOM07ztG1c7c5K6Dn-VobUBF41ry8HGG3RRl020t3_1Gn0-P30Ur8nq_WVZ5KvE0IwNScaMEBlhtGLMprwqS6JkpXiWMrZhtlapqUEaxaUAQTIpJdCKUKokgw3jFbtGD6e9ffDfh_EbvfeH0I0nNRWSC6EopCMFJ8oEH2Owte7D6DP8aAJ6ylNPeeqFpqCnPDUZJfcnyT4OPvzzVIIcDVP2C6OOcZY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Dutta, Deepashree</creator><creator>Sherwood, Steven C.</creator><creator>Meissner, Katrin J.</creator><creator>Gupta, Alex Sen</creator><creator>Lunt, Daniel J.</creator><creator>Tourte, Gregory J. L.</creator><creator>Colman, Robert</creator><creator>Narsey, Sugata</creator><creator>Fuchs, David</creator><creator>Brown, Josephine R.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20210701</creationdate><title>A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates</title><author>Dutta, Deepashree ; Sherwood, Steven C. ; Meissner, Katrin J. ; Gupta, Alex Sen ; Lunt, Daniel J. ; Tourte, Gregory J. L. ; Colman, Robert ; Narsey, Sugata ; Fuchs, David ; Brown, Josephine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-93c669132b33e45baa187b859433d3ef84cf07c8576061977702b1228730d35b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Arctic climates</topic><topic>Arctic clouds</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Clouds</topic><topic>Cretaceous</topic><topic>Energy transport</topic><topic>General circulation models</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Ice removal</topic><topic>Intercomparison</topic><topic>Latent heat</topic><topic>Long wave radiation</topic><topic>Modelling</topic><topic>Ocean models</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceans</topic><topic>Paleogene</topic><topic>Radiation</topic><topic>Reduction</topic><topic>Sea ice</topic><topic>Static energy</topic><topic>Surface temperature</topic><topic>Tropical climate</topic><topic>Warm climates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Deepashree</creatorcontrib><creatorcontrib>Sherwood, Steven C.</creatorcontrib><creatorcontrib>Meissner, Katrin J.</creatorcontrib><creatorcontrib>Gupta, Alex Sen</creatorcontrib><creatorcontrib>Lunt, Daniel J.</creatorcontrib><creatorcontrib>Tourte, Gregory J. L.</creatorcontrib><creatorcontrib>Colman, Robert</creatorcontrib><creatorcontrib>Narsey, Sugata</creatorcontrib><creatorcontrib>Fuchs, David</creatorcontrib><creatorcontrib>Brown, Josephine R.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Deepashree</au><au>Sherwood, Steven C.</au><au>Meissner, Katrin J.</au><au>Gupta, Alex Sen</au><au>Lunt, Daniel J.</au><au>Tourte, Gregory J. L.</au><au>Colman, Robert</au><au>Narsey, Sugata</au><au>Fuchs, David</au><au>Brown, Josephine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates</atitle><jtitle>Journal of climate</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>34</volume><issue>14</issue><spage>5723</spage><epage>5740</epage><pages>5723-5740</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>When simulating past warm climates, such as the early Cretaceous and Paleogene periods, general circulation models (GCMs) underestimate the magnitude of warming in the Arctic. Additionally, model intercomparisons show a large spread in the magnitude of Arctic warming for these warmer-than-modern climates. Several mechanisms have been proposed to explain these disagreements, including the unrealistic representation of polar clouds or underestimated poleward heat transport in the models. This study provides an intercomparison of Arctic cloud and atmospheric heat transport (AHT) responses to strong imposed polar-amplified surface ocean warming across four atmosphere-only GCMs. All models simulate an increase in high clouds throughout the year; the resulting reduction in longwave radiation loss to space acts to support the imposed Arctic warming. The response of low- and midlevel clouds varies considerably across the models, with models responding differently to surface warming and sea ice removal. The AHT is consistently weaker in the imposed warming experiments due to a large reduction in dry static energy transport that offsets a smaller increase in latent heat transport, thereby opposing the imposed surface warming. Our idealized polar amplification experiments require very large increases in implied ocean heat transport (OHT) to maintain steady state. Increased CO₂ or tropical temperatures that likely characterized past warm climates reduce the need for such large OHT increases.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-20-0354.1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2021-07, Vol.34 (14), p.5723-5740
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2675668204
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects Amplification
Arctic climates
Arctic clouds
Atmospheric models
Carbon dioxide
Clouds
Cretaceous
Energy transport
General circulation models
Heat
Heat transport
Ice removal
Intercomparison
Latent heat
Long wave radiation
Modelling
Ocean models
Ocean temperature
Ocean warming
Oceans
Paleogene
Radiation
Reduction
Sea ice
Static energy
Surface temperature
Tropical climate
Warm climates
title A Multimodel Investigation of Atmospheric Mechanisms for Driving Arctic Amplification in Warmer Climates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multimodel%20Investigation%20of%20Atmospheric%20Mechanisms%20for%20Driving%20Arctic%20Amplification%20in%20Warmer%20Climates&rft.jtitle=Journal%20of%20climate&rft.au=Dutta,%20Deepashree&rft.date=2021-07-01&rft.volume=34&rft.issue=14&rft.spage=5723&rft.epage=5740&rft.pages=5723-5740&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-20-0354.1&rft_dat=%3Cjstor_proqu%3E27076912%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675668204&rft_id=info:pmid/&rft_jstor_id=27076912&rfr_iscdi=true