Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations

Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of atmospheric and oceanic technology 2022-01, Vol.39 (1), p.91-109
Hauptverfasser: Serke, David J., Ellis, Scott M., Tessendorf, Sarah A., Albo, David E., Hubbert, John C., Haggerty, Julie A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 1
container_start_page 91
container_title Journal of atmospheric and oceanic technology
container_volume 39
creator Serke, David J.
Ellis, Scott M.
Tessendorf, Sarah A.
Albo, David E.
Hubbert, John C.
Haggerty, Julie A.
description Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.
doi_str_mv 10.1175/JTECH-D-21-0003.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675658199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675658199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1611-f1dc2c41da77f671cb51e49db751490244a9c1f47ba072a68c685abfac2dd9163</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKs_wFvAczSTzUfjrbRVK4WCVK8hm2xqSru7JlvFf-_WCp5mBh7mfXkQugZ6C6DE3fNqNnkiU8KAUEqLWzhBAxCMEsqZPEUDqgpNqFDsHF3kvOkZKEAO0NuL9TbhuYv1Go-36ybF7n13_7_iaZVdim0Xmxrb2uNJs2ttirk_v3oAj2NyyYYOL8tcpU97APMlOgt2m6urvzlErw-zVd9wsXycT8YL4kACkADeMcfBW6WCVOBKARXXvlQCuKaMc6sdBK5KSxWzcuTkSNgyWMe81yCLIbo5_m1T87Gvcmc2zT7VfaRhUgkpRqB1T8GRcqnJOVXBtCnubPo2QM1Bn_nVZ6aGgTnoM1D8APJMY38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675658199</pqid></control><display><type>article</type><title>Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Serke, David J. ; Ellis, Scott M. ; Tessendorf, Sarah A. ; Albo, David E. ; Hubbert, John C. ; Haggerty, Julie A.</creator><creatorcontrib>Serke, David J. ; Ellis, Scott M. ; Tessendorf, Sarah A. ; Albo, David E. ; Hubbert, John C. ; Haggerty, Julie A.</creatorcontrib><description>Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-21-0003.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air safety ; Aircraft ; Aircraft detection ; Aircraft hazards ; Aircraft icing ; Aircraft observations ; Algorithms ; Aviation ; Diameters ; Dual polarization radar ; Flight ; Flight hazards ; Flight safety ; Fuzzy logic ; Icing ; Meteorological services ; Numerical prediction ; Numerical weather forecasting ; Particle size distribution ; Prediction models ; Radar ; Research aircraft ; Solid phases ; Temperature profile ; Temperature profiles ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2022-01, Vol.39 (1), p.91-109</ispartof><rights>Copyright American Meteorological Society Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1611-f1dc2c41da77f671cb51e49db751490244a9c1f47ba072a68c685abfac2dd9163</citedby><cites>FETCH-LOGICAL-c1611-f1dc2c41da77f671cb51e49db751490244a9c1f47ba072a68c685abfac2dd9163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Serke, David J.</creatorcontrib><creatorcontrib>Ellis, Scott M.</creatorcontrib><creatorcontrib>Tessendorf, Sarah A.</creatorcontrib><creatorcontrib>Albo, David E.</creatorcontrib><creatorcontrib>Hubbert, John C.</creatorcontrib><creatorcontrib>Haggerty, Julie A.</creatorcontrib><title>Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations</title><title>Journal of atmospheric and oceanic technology</title><description>Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.</description><subject>Air safety</subject><subject>Aircraft</subject><subject>Aircraft detection</subject><subject>Aircraft hazards</subject><subject>Aircraft icing</subject><subject>Aircraft observations</subject><subject>Algorithms</subject><subject>Aviation</subject><subject>Diameters</subject><subject>Dual polarization radar</subject><subject>Flight</subject><subject>Flight hazards</subject><subject>Flight safety</subject><subject>Fuzzy logic</subject><subject>Icing</subject><subject>Meteorological services</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Particle size distribution</subject><subject>Prediction models</subject><subject>Radar</subject><subject>Research aircraft</subject><subject>Solid phases</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKs_wFvAczSTzUfjrbRVK4WCVK8hm2xqSru7JlvFf-_WCp5mBh7mfXkQugZ6C6DE3fNqNnkiU8KAUEqLWzhBAxCMEsqZPEUDqgpNqFDsHF3kvOkZKEAO0NuL9TbhuYv1Go-36ybF7n13_7_iaZVdim0Xmxrb2uNJs2ttirk_v3oAj2NyyYYOL8tcpU97APMlOgt2m6urvzlErw-zVd9wsXycT8YL4kACkADeMcfBW6WCVOBKARXXvlQCuKaMc6sdBK5KSxWzcuTkSNgyWMe81yCLIbo5_m1T87Gvcmc2zT7VfaRhUgkpRqB1T8GRcqnJOVXBtCnubPo2QM1Bn_nVZ6aGgTnoM1D8APJMY38</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Serke, David J.</creator><creator>Ellis, Scott M.</creator><creator>Tessendorf, Sarah A.</creator><creator>Albo, David E.</creator><creator>Hubbert, John C.</creator><creator>Haggerty, Julie A.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>202201</creationdate><title>Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations</title><author>Serke, David J. ; Ellis, Scott M. ; Tessendorf, Sarah A. ; Albo, David E. ; Hubbert, John C. ; Haggerty, Julie A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1611-f1dc2c41da77f671cb51e49db751490244a9c1f47ba072a68c685abfac2dd9163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air safety</topic><topic>Aircraft</topic><topic>Aircraft detection</topic><topic>Aircraft hazards</topic><topic>Aircraft icing</topic><topic>Aircraft observations</topic><topic>Algorithms</topic><topic>Aviation</topic><topic>Diameters</topic><topic>Dual polarization radar</topic><topic>Flight</topic><topic>Flight hazards</topic><topic>Flight safety</topic><topic>Fuzzy logic</topic><topic>Icing</topic><topic>Meteorological services</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Particle size distribution</topic><topic>Prediction models</topic><topic>Radar</topic><topic>Research aircraft</topic><topic>Solid phases</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serke, David J.</creatorcontrib><creatorcontrib>Ellis, Scott M.</creatorcontrib><creatorcontrib>Tessendorf, Sarah A.</creatorcontrib><creatorcontrib>Albo, David E.</creatorcontrib><creatorcontrib>Hubbert, John C.</creatorcontrib><creatorcontrib>Haggerty, Julie A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serke, David J.</au><au>Ellis, Scott M.</au><au>Tessendorf, Sarah A.</au><au>Albo, David E.</au><au>Hubbert, John C.</au><au>Haggerty, Julie A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2022-01</date><risdate>2022</risdate><volume>39</volume><issue>1</issue><spage>91</spage><epage>109</epage><pages>91-109</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-21-0003.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2022-01, Vol.39 (1), p.91-109
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_journals_2675658199
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Air safety
Aircraft
Aircraft detection
Aircraft hazards
Aircraft icing
Aircraft observations
Algorithms
Aviation
Diameters
Dual polarization radar
Flight
Flight hazards
Flight safety
Fuzzy logic
Icing
Meteorological services
Numerical prediction
Numerical weather forecasting
Particle size distribution
Prediction models
Radar
Research aircraft
Solid phases
Temperature profile
Temperature profiles
Weather forecasting
title Radar Icing Algorithm: Algorithm Description and Comparison with Aircraft Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radar%20Icing%20Algorithm:%20Algorithm%20Description%20and%20Comparison%20with%20Aircraft%20Observations&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Serke,%20David%20J.&rft.date=2022-01&rft.volume=39&rft.issue=1&rft.spage=91&rft.epage=109&rft.pages=91-109&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-21-0003.1&rft_dat=%3Cproquest_cross%3E2675658199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675658199&rft_id=info:pmid/&rfr_iscdi=true