Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data
Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, t...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2021-05, Vol.38 (5), p.951-961 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 5 |
container_start_page | 951 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 38 |
creator | Leroy, Stephen S. Ao, Chi O. Verkhoglyadova, Olga P. Oyola, Mayra I. |
description | Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data. |
doi_str_mv | 10.1175/JTECH-D-20-0031.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675652840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675652840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-edceb8d609c62b7353c9bd5d6c4fb5684e29049506b7776aea30c86e7e555a523</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKc_wLeAz503SZO0j3OdczIduPkc0jR1HbWtSftQf73tJly43MvH4ZyD0D2BGSGSP77ul4uXIAkoBACMzMgFmhA-XiEVl2gCksUBcEmv0Y33RwAgjIgJKuaVLvvfovrC7cHipOjc8MCL3pQWpz1-0r31ha7wumqta-pSt0Vd4WE03jUH6yzOa4ffdNOMGqv33Q5_6Kyo8daYrmzPeKJbfYuucl16e_e_p-jzebkfTG-2q_VivgnMYKgNbGZsGmUCYiNoKhlnJk4zngkT5ikXUWhpDGHMQaRSSqGtZmAiYaXlnGtO2RQ9nHUbV_901rfqWJ9CeUWF5ILTKISBImfKuNp7Z3PVuOJbu14RUGOj6tSoShQFNTaqCPsD4l1pMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675652840</pqid></control><display><type>article</type><title>Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Leroy, Stephen S. ; Ao, Chi O. ; Verkhoglyadova, Olga P. ; Oyola, Mayra I.</creator><creatorcontrib>Leroy, Stephen S. ; Ao, Chi O. ; Verkhoglyadova, Olga P. ; Oyola, Mayra I.</creatorcontrib><description>Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-20-0031.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric tides ; Basis functions ; Bayesian analysis ; Bayesian theory ; Bias ; Dimensions ; Diurnal ; Diurnal cycle ; Diurnal variations ; Error analysis ; Interpolation ; Mapping ; Noise measurement ; Probability theory ; Radio ; Radio occultation ; Smoothness ; Spherical harmonics ; Statistical analysis ; Stratosphere ; Temporal variability ; Temporal variations ; Uncertainty analysis ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2021-05, Vol.38 (5), p.951-961</ispartof><rights>Copyright American Meteorological Society May 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-edceb8d609c62b7353c9bd5d6c4fb5684e29049506b7776aea30c86e7e555a523</citedby><cites>FETCH-LOGICAL-c316t-edceb8d609c62b7353c9bd5d6c4fb5684e29049506b7776aea30c86e7e555a523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Leroy, Stephen S.</creatorcontrib><creatorcontrib>Ao, Chi O.</creatorcontrib><creatorcontrib>Verkhoglyadova, Olga P.</creatorcontrib><creatorcontrib>Oyola, Mayra I.</creatorcontrib><title>Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data</title><title>Journal of atmospheric and oceanic technology</title><description>Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.</description><subject>Atmosphere</subject><subject>Atmospheric tides</subject><subject>Basis functions</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Bias</subject><subject>Dimensions</subject><subject>Diurnal</subject><subject>Diurnal cycle</subject><subject>Diurnal variations</subject><subject>Error analysis</subject><subject>Interpolation</subject><subject>Mapping</subject><subject>Noise measurement</subject><subject>Probability theory</subject><subject>Radio</subject><subject>Radio occultation</subject><subject>Smoothness</subject><subject>Spherical harmonics</subject><subject>Statistical analysis</subject><subject>Stratosphere</subject><subject>Temporal variability</subject><subject>Temporal variations</subject><subject>Uncertainty analysis</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFFLwzAUhYMoOKc_wLeAz503SZO0j3OdczIduPkc0jR1HbWtSftQf73tJly43MvH4ZyD0D2BGSGSP77ul4uXIAkoBACMzMgFmhA-XiEVl2gCksUBcEmv0Y33RwAgjIgJKuaVLvvfovrC7cHipOjc8MCL3pQWpz1-0r31ha7wumqta-pSt0Vd4WE03jUH6yzOa4ffdNOMGqv33Q5_6Kyo8daYrmzPeKJbfYuucl16e_e_p-jzebkfTG-2q_VivgnMYKgNbGZsGmUCYiNoKhlnJk4zngkT5ikXUWhpDGHMQaRSSqGtZmAiYaXlnGtO2RQ9nHUbV_901rfqWJ9CeUWF5ILTKISBImfKuNp7Z3PVuOJbu14RUGOj6tSoShQFNTaqCPsD4l1pMQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Leroy, Stephen S.</creator><creator>Ao, Chi O.</creator><creator>Verkhoglyadova, Olga P.</creator><creator>Oyola, Mayra I.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>202105</creationdate><title>Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data</title><author>Leroy, Stephen S. ; Ao, Chi O. ; Verkhoglyadova, Olga P. ; Oyola, Mayra I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-edceb8d609c62b7353c9bd5d6c4fb5684e29049506b7776aea30c86e7e555a523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Atmospheric tides</topic><topic>Basis functions</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Bias</topic><topic>Dimensions</topic><topic>Diurnal</topic><topic>Diurnal cycle</topic><topic>Diurnal variations</topic><topic>Error analysis</topic><topic>Interpolation</topic><topic>Mapping</topic><topic>Noise measurement</topic><topic>Probability theory</topic><topic>Radio</topic><topic>Radio occultation</topic><topic>Smoothness</topic><topic>Spherical harmonics</topic><topic>Statistical analysis</topic><topic>Stratosphere</topic><topic>Temporal variability</topic><topic>Temporal variations</topic><topic>Uncertainty analysis</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroy, Stephen S.</creatorcontrib><creatorcontrib>Ao, Chi O.</creatorcontrib><creatorcontrib>Verkhoglyadova, Olga P.</creatorcontrib><creatorcontrib>Oyola, Mayra I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroy, Stephen S.</au><au>Ao, Chi O.</au><au>Verkhoglyadova, Olga P.</au><au>Oyola, Mayra I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2021-05</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>951</spage><epage>961</epage><pages>951-961</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Bayesian interpolation has previously been proposed as a strategy to construct maps of radio occultation (RO) data, but that proposition did not consider the diurnal dimension of RO data. In this work, the basis functions of Bayesian interpolation are extended into the domain of the diurnal cycle, thus enabling monthly mapping of radio occultation data in synoptic time and analysis of the atmospheric tides. The basis functions are spherical harmonics multiplied by sinusoids in the diurnal cycle up to arbitrary spherical harmonic degree and diurnal cycle harmonic. Bayesian interpolation requires a regularizer to impose smoothness on the fits it produces, thereby preventing the overfitting of data. In this work, a formulation for the regularizer is proposed and the most probable values of the parameters of the regularizer determined. Special care is required when obvious gaps in the sampling of the diurnal cycle are known to occur in order to prevent the false detection of statistically significant high-degree harmonics of the diurnal cycle in the atmosphere. Finally, this work probes the ability of Bayesian interpolation to generate a valid uncertainty analysis of the fit. The postfit residuals of Bayesian interpolation are dominated not by measurement noise but by unresolved variability in the atmosphere, which is statistically nonuniform across the globe, thus violating the central assumption of Bayesian interpolation. The problem is ameliorated by constructing maps of RO data using Bayesian interpolation that partially resolve the temporal variability of the atmosphere, constructing maps for approximately every 3 days of RO data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-20-0031.1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2021-05, Vol.38 (5), p.951-961 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_journals_2675652840 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmosphere Atmospheric tides Basis functions Bayesian analysis Bayesian theory Bias Dimensions Diurnal Diurnal cycle Diurnal variations Error analysis Interpolation Mapping Noise measurement Probability theory Radio Radio occultation Smoothness Spherical harmonics Statistical analysis Stratosphere Temporal variability Temporal variations Uncertainty analysis Weather forecasting |
title | Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20the%20Diurnal%20Cycle%20by%20Bayesian%20Interpolation%20on%20a%20Sphere%20for%20Mapping%20GNSS%20Radio%20Occultation%20Data&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Leroy,%20Stephen%20S.&rft.date=2021-05&rft.volume=38&rft.issue=5&rft.spage=951&rft.epage=961&rft.pages=951-961&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-20-0031.1&rft_dat=%3Cproquest_cross%3E2675652840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675652840&rft_id=info:pmid/&rfr_iscdi=true |