Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model

We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2022-04, Vol.79 (4), p.933-952
Hauptverfasser: Avsarkisov, Victor, Becker, Erich, Renkwitz, Toralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 952
container_issue 4
container_start_page 933
container_title Journal of the atmospheric sciences
container_volume 79
creator Avsarkisov, Victor
Becker, Erich
Renkwitz, Toralf
description We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale ( L b ) and the Ozmidov scale ( L o ) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.
doi_str_mv 10.1175/JAS-D-21-0005.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675640162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675640162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</originalsourceid><addsrcrecordid>eNotkM1OAjEUhRujiYiu3TZxPdCf6fy4I4CogWgU47LptHdkyDDFtkPCzpUv4Bv6JA7B1d1895ycD6FrSgaUpmL4OHqNJhGjESFEDOgJ6lHBSETiJD9FPUIYi-KcZefowvt1xxCW0h76XrauaGtoAn5WTm0ggPO4anBYAV5UxtSAR2Fj_XYFDm7xcgXWQai0qvHUh2qjAng8AdNqMLh0doMVnjm1q8Iev6sd_H79vIC39a5qPvAMGnDd57hyuq1VqGyDF9ZAfYnOSlV7uPq_ffR2N12O76P50-xhPJpHmuZ5iBRLNQeSGVaYQpsyyRTjRogyy1gGpWEli4UmIqbAc6FFThjPEgU8KUoKBed9dHPM3Tr72YIPcm1b13SVkiWpSGJCE9ZRwyOlnfXeQSm3rlvq9pISeZAtO9lyIhmVB9mS8j_RIHVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675640162</pqid></control><display><type>article</type><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</creator><creatorcontrib>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</creatorcontrib><description>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale ( L b ) and the Ozmidov scale ( L o ) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-21-0005.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric circulation ; Atmospheric models ; Atmospheric physics ; Atmospheric turbulence ; Buoyancy ; Climate studies ; Correlation analysis ; Dynamics ; Eddy diffusion ; Fluid flow ; Froude number ; General circulation models ; Gravity waves ; High altitude ; Lower mantle ; Mesoscale phenomena ; Mesosphere ; Middle atmosphere ; Modelling ; Nonlinear systems ; Nonlinearity ; Parameterization ; Parameters ; Physics ; Radar ; Radar measurement ; Reynolds number ; Scaling ; Small-scale turbulence ; Thermosphere ; Turbulent diffusion ; Turbulent flow ; Velocity ; Winter</subject><ispartof>Journal of the atmospheric sciences, 2022-04, Vol.79 (4), p.933-952</ispartof><rights>Copyright American Meteorological Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</citedby><cites>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</cites><orcidid>0000-0001-5747-2525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Avsarkisov, Victor</creatorcontrib><creatorcontrib>Becker, Erich</creatorcontrib><creatorcontrib>Renkwitz, Toralf</creatorcontrib><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><title>Journal of the atmospheric sciences</title><description>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale ( L b ) and the Ozmidov scale ( L o ) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</description><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospheric physics</subject><subject>Atmospheric turbulence</subject><subject>Buoyancy</subject><subject>Climate studies</subject><subject>Correlation analysis</subject><subject>Dynamics</subject><subject>Eddy diffusion</subject><subject>Fluid flow</subject><subject>Froude number</subject><subject>General circulation models</subject><subject>Gravity waves</subject><subject>High altitude</subject><subject>Lower mantle</subject><subject>Mesoscale phenomena</subject><subject>Mesosphere</subject><subject>Middle atmosphere</subject><subject>Modelling</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Small-scale turbulence</subject><subject>Thermosphere</subject><subject>Turbulent diffusion</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Winter</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1OAjEUhRujiYiu3TZxPdCf6fy4I4CogWgU47LptHdkyDDFtkPCzpUv4Bv6JA7B1d1895ycD6FrSgaUpmL4OHqNJhGjESFEDOgJ6lHBSETiJD9FPUIYi-KcZefowvt1xxCW0h76XrauaGtoAn5WTm0ggPO4anBYAV5UxtSAR2Fj_XYFDm7xcgXWQai0qvHUh2qjAng8AdNqMLh0doMVnjm1q8Iev6sd_H79vIC39a5qPvAMGnDd57hyuq1VqGyDF9ZAfYnOSlV7uPq_ffR2N12O76P50-xhPJpHmuZ5iBRLNQeSGVaYQpsyyRTjRogyy1gGpWEli4UmIqbAc6FFThjPEgU8KUoKBed9dHPM3Tr72YIPcm1b13SVkiWpSGJCE9ZRwyOlnfXeQSm3rlvq9pISeZAtO9lyIhmVB9mS8j_RIHVI</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Avsarkisov, Victor</creator><creator>Becker, Erich</creator><creator>Renkwitz, Toralf</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5747-2525</orcidid></search><sort><creationdate>202204</creationdate><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><author>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospheric physics</topic><topic>Atmospheric turbulence</topic><topic>Buoyancy</topic><topic>Climate studies</topic><topic>Correlation analysis</topic><topic>Dynamics</topic><topic>Eddy diffusion</topic><topic>Fluid flow</topic><topic>Froude number</topic><topic>General circulation models</topic><topic>Gravity waves</topic><topic>High altitude</topic><topic>Lower mantle</topic><topic>Mesoscale phenomena</topic><topic>Mesosphere</topic><topic>Middle atmosphere</topic><topic>Modelling</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Small-scale turbulence</topic><topic>Thermosphere</topic><topic>Turbulent diffusion</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avsarkisov, Victor</creatorcontrib><creatorcontrib>Becker, Erich</creatorcontrib><creatorcontrib>Renkwitz, Toralf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avsarkisov, Victor</au><au>Becker, Erich</au><au>Renkwitz, Toralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2022-04</date><risdate>2022</risdate><volume>79</volume><issue>4</issue><spage>933</spage><epage>952</epage><pages>933-952</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale ( L b ) and the Ozmidov scale ( L o ) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-21-0005.1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5747-2525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2022-04, Vol.79 (4), p.933-952
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2675640162
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Atmospheric circulation
Atmospheric models
Atmospheric physics
Atmospheric turbulence
Buoyancy
Climate studies
Correlation analysis
Dynamics
Eddy diffusion
Fluid flow
Froude number
General circulation models
Gravity waves
High altitude
Lower mantle
Mesoscale phenomena
Mesosphere
Middle atmosphere
Modelling
Nonlinear systems
Nonlinearity
Parameterization
Parameters
Physics
Radar
Radar measurement
Reynolds number
Scaling
Small-scale turbulence
Thermosphere
Turbulent diffusion
Turbulent flow
Velocity
Winter
title Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20Parameters%20in%20the%20Middle%20Atmosphere:%20Theoretical%20Estimates%20Deduced%20from%20a%20Gravity%20Wave%E2%80%93Resolving%20General%20Circulation%20Model&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Avsarkisov,%20Victor&rft.date=2022-04&rft.volume=79&rft.issue=4&rft.spage=933&rft.epage=952&rft.pages=933-952&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-21-0005.1&rft_dat=%3Cproquest_cross%3E2675640162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675640162&rft_id=info:pmid/&rfr_iscdi=true