Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model
We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2022-04, Vol.79 (4), p.933-952 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 952 |
---|---|
container_issue | 4 |
container_start_page | 933 |
container_title | Journal of the atmospheric sciences |
container_volume | 79 |
creator | Avsarkisov, Victor Becker, Erich Renkwitz, Toralf |
description | We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale (
L
b
) and the Ozmidov scale (
L
o
) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average. |
doi_str_mv | 10.1175/JAS-D-21-0005.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675640162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675640162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</originalsourceid><addsrcrecordid>eNotkM1OAjEUhRujiYiu3TZxPdCf6fy4I4CogWgU47LptHdkyDDFtkPCzpUv4Bv6JA7B1d1895ycD6FrSgaUpmL4OHqNJhGjESFEDOgJ6lHBSETiJD9FPUIYi-KcZefowvt1xxCW0h76XrauaGtoAn5WTm0ggPO4anBYAV5UxtSAR2Fj_XYFDm7xcgXWQai0qvHUh2qjAng8AdNqMLh0doMVnjm1q8Iev6sd_H79vIC39a5qPvAMGnDd57hyuq1VqGyDF9ZAfYnOSlV7uPq_ffR2N12O76P50-xhPJpHmuZ5iBRLNQeSGVaYQpsyyRTjRogyy1gGpWEli4UmIqbAc6FFThjPEgU8KUoKBed9dHPM3Tr72YIPcm1b13SVkiWpSGJCE9ZRwyOlnfXeQSm3rlvq9pISeZAtO9lyIhmVB9mS8j_RIHVI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675640162</pqid></control><display><type>article</type><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</creator><creatorcontrib>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</creatorcontrib><description>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale (
L
b
) and the Ozmidov scale (
L
o
) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-21-0005.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric circulation ; Atmospheric models ; Atmospheric physics ; Atmospheric turbulence ; Buoyancy ; Climate studies ; Correlation analysis ; Dynamics ; Eddy diffusion ; Fluid flow ; Froude number ; General circulation models ; Gravity waves ; High altitude ; Lower mantle ; Mesoscale phenomena ; Mesosphere ; Middle atmosphere ; Modelling ; Nonlinear systems ; Nonlinearity ; Parameterization ; Parameters ; Physics ; Radar ; Radar measurement ; Reynolds number ; Scaling ; Small-scale turbulence ; Thermosphere ; Turbulent diffusion ; Turbulent flow ; Velocity ; Winter</subject><ispartof>Journal of the atmospheric sciences, 2022-04, Vol.79 (4), p.933-952</ispartof><rights>Copyright American Meteorological Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</citedby><cites>FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</cites><orcidid>0000-0001-5747-2525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3668,27901,27902</link.rule.ids></links><search><creatorcontrib>Avsarkisov, Victor</creatorcontrib><creatorcontrib>Becker, Erich</creatorcontrib><creatorcontrib>Renkwitz, Toralf</creatorcontrib><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><title>Journal of the atmospheric sciences</title><description>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale (
L
b
) and the Ozmidov scale (
L
o
) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</description><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospheric physics</subject><subject>Atmospheric turbulence</subject><subject>Buoyancy</subject><subject>Climate studies</subject><subject>Correlation analysis</subject><subject>Dynamics</subject><subject>Eddy diffusion</subject><subject>Fluid flow</subject><subject>Froude number</subject><subject>General circulation models</subject><subject>Gravity waves</subject><subject>High altitude</subject><subject>Lower mantle</subject><subject>Mesoscale phenomena</subject><subject>Mesosphere</subject><subject>Middle atmosphere</subject><subject>Modelling</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Physics</subject><subject>Radar</subject><subject>Radar measurement</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Small-scale turbulence</subject><subject>Thermosphere</subject><subject>Turbulent diffusion</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Winter</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1OAjEUhRujiYiu3TZxPdCf6fy4I4CogWgU47LptHdkyDDFtkPCzpUv4Bv6JA7B1d1895ycD6FrSgaUpmL4OHqNJhGjESFEDOgJ6lHBSETiJD9FPUIYi-KcZefowvt1xxCW0h76XrauaGtoAn5WTm0ggPO4anBYAV5UxtSAR2Fj_XYFDm7xcgXWQai0qvHUh2qjAng8AdNqMLh0doMVnjm1q8Iev6sd_H79vIC39a5qPvAMGnDd57hyuq1VqGyDF9ZAfYnOSlV7uPq_ffR2N12O76P50-xhPJpHmuZ5iBRLNQeSGVaYQpsyyRTjRogyy1gGpWEli4UmIqbAc6FFThjPEgU8KUoKBed9dHPM3Tr72YIPcm1b13SVkiWpSGJCE9ZRwyOlnfXeQSm3rlvq9pISeZAtO9lyIhmVB9mS8j_RIHVI</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Avsarkisov, Victor</creator><creator>Becker, Erich</creator><creator>Renkwitz, Toralf</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-5747-2525</orcidid></search><sort><creationdate>202204</creationdate><title>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</title><author>Avsarkisov, Victor ; Becker, Erich ; Renkwitz, Toralf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c199t-a27c3e08d2bdbcdf68a23d55f8828efd2f245c0541e395c5902386ae36bf1eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospheric physics</topic><topic>Atmospheric turbulence</topic><topic>Buoyancy</topic><topic>Climate studies</topic><topic>Correlation analysis</topic><topic>Dynamics</topic><topic>Eddy diffusion</topic><topic>Fluid flow</topic><topic>Froude number</topic><topic>General circulation models</topic><topic>Gravity waves</topic><topic>High altitude</topic><topic>Lower mantle</topic><topic>Mesoscale phenomena</topic><topic>Mesosphere</topic><topic>Middle atmosphere</topic><topic>Modelling</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Physics</topic><topic>Radar</topic><topic>Radar measurement</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Small-scale turbulence</topic><topic>Thermosphere</topic><topic>Turbulent diffusion</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avsarkisov, Victor</creatorcontrib><creatorcontrib>Becker, Erich</creatorcontrib><creatorcontrib>Renkwitz, Toralf</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avsarkisov, Victor</au><au>Becker, Erich</au><au>Renkwitz, Toralf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2022-04</date><risdate>2022</risdate><volume>79</volume><issue>4</issue><spage>933</spage><epage>952</epage><pages>933-952</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>We present a scaling analysis for the stratified turbulent and small-scale turbulent regimes of atmospheric flow with emphasis on the mesosphere. We distinguish rotating-stratified macroturbulence turbulence (SMT), stratified turbulence (ST), and small-scale isotropic Kolmogorov turbulence (KT), and we specify the length and time scales and the characteristic velocities for these regimes. It is shown that the buoyancy scale (
L
b
) and the Ozmidov scale (
L
o
) are the main parameters that describe the transition from SMT to KT. We employ the buoyancy Reynolds number and horizontal Froude number to characterize ST and KT in the mesosphere. This theory is applied to simulation results from a high-resolution general circulation model with a Smagorinsky-type turbulent diffusion scheme for the subgrid-scale parameterization. The model allows us to derive the turbulent root-mean-square (rms) velocity in the KT regime. It is found that the turbulent RMS velocity has a single maximum in summer and a double maximum in winter months. The secondary maximum in the winter MLT we associate with a secondary gravity wave–breaking phenomenon. The turbulent rms velocity results from the model agree well with full correlation analyses based on MF-radar measurements. A new scaling for the mesoscale horizontal velocity based on the idea of direct energy cascade in mesoscales is proposed. The latter findings for mesoscale and small-scale characteristic velocities support the idea proposed in this research that mesoscale and small-scale dynamics in the mesosphere are governed by SMT, ST, and KT in the statistical average.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-21-0005.1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5747-2525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2022-04, Vol.79 (4), p.933-952 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2675640162 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Atmosphere Atmospheric circulation Atmospheric models Atmospheric physics Atmospheric turbulence Buoyancy Climate studies Correlation analysis Dynamics Eddy diffusion Fluid flow Froude number General circulation models Gravity waves High altitude Lower mantle Mesoscale phenomena Mesosphere Middle atmosphere Modelling Nonlinear systems Nonlinearity Parameterization Parameters Physics Radar Radar measurement Reynolds number Scaling Small-scale turbulence Thermosphere Turbulent diffusion Turbulent flow Velocity Winter |
title | Turbulent Parameters in the Middle Atmosphere: Theoretical Estimates Deduced from a Gravity Wave–Resolving General Circulation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20Parameters%20in%20the%20Middle%20Atmosphere:%20Theoretical%20Estimates%20Deduced%20from%20a%20Gravity%20Wave%E2%80%93Resolving%20General%20Circulation%20Model&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Avsarkisov,%20Victor&rft.date=2022-04&rft.volume=79&rft.issue=4&rft.spage=933&rft.epage=952&rft.pages=933-952&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-21-0005.1&rft_dat=%3Cproquest_cross%3E2675640162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675640162&rft_id=info:pmid/&rfr_iscdi=true |