Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity

Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2022-01, Vol.79 (1), p.101-118
Hauptverfasser: Vulfson, Alexander, Nikolaev, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 101
container_title Journal of the atmospheric sciences
container_volume 79
creator Vulfson, Alexander
Nikolaev, Petr
description Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.
doi_str_mv 10.1175/JAS-D-20-0330.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675630200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675630200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-fd06f247a765a540049c989be10535f7ee20c09441845624c3103d8de3461223</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWwZmuJdej4kdeyankqFUgJ3Vqu47Sp0rg4aUV23fET8HP9EhyV2YzmztG90kXolsA9IaE_eh2n3tSj4AFjTjpDA-L3Fw_iczQAoNTjMY0u0VXTrMENDckAfSdGyQqn5aaspC3bDmcrbWyHTYEnpt5r1ZZ7jbOdXewqXbc4kZ22-KMp6yU-Hn7SrSOsrI6HX_xuZZ23FZ6VX_030fWyXWGn4VQr49bMbHoLZz3Xti374LmujHKx1-iikFWjb_73EGWPD9nk2Uvenl4m48RTJOKtV-QQFJSHMgx86XMAHqs4iheagM_8ItSagoKYc0f7AeWKEWB5lGvGA0IpG6K7k-3Wms-dblqxNjtbu0RBg9APGFAAR41OlLKmaawuxNaWG2k7QUD0ZQtXtpgKCqIvWxD2B7lGdBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675630200</pqid></control><display><type>article</type><title>Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Vulfson, Alexander ; Nikolaev, Petr</creator><creatorcontrib>Vulfson, Alexander ; Nikolaev, Petr</creatorcontrib><description>Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-20-0330.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Approximation ; Atmospheric convection ; Atmospheric turbulence ; Boundary layers ; Complementation ; Convection ; Energy dissipation ; Kinetic energy ; Mixed layer ; Mixing length ; Parameters ; Similarity theory ; Surface boundary layer ; Surface layers ; Theories ; Turbulence ; Turbulent transfer ; Velocity ; Vertical velocities</subject><ispartof>Journal of the atmospheric sciences, 2022-01, Vol.79 (1), p.101-118</ispartof><rights>Copyright American Meteorological Society 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c184t-fd06f247a765a540049c989be10535f7ee20c09441845624c3103d8de3461223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3682,27929,27930</link.rule.ids></links><search><creatorcontrib>Vulfson, Alexander</creatorcontrib><creatorcontrib>Nikolaev, Petr</creatorcontrib><title>Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity</title><title>Journal of the atmospheric sciences</title><description>Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.</description><subject>Approximation</subject><subject>Atmospheric convection</subject><subject>Atmospheric turbulence</subject><subject>Boundary layers</subject><subject>Complementation</subject><subject>Convection</subject><subject>Energy dissipation</subject><subject>Kinetic energy</subject><subject>Mixed layer</subject><subject>Mixing length</subject><subject>Parameters</subject><subject>Similarity theory</subject><subject>Surface boundary layer</subject><subject>Surface layers</subject><subject>Theories</subject><subject>Turbulence</subject><subject>Turbulent transfer</subject><subject>Velocity</subject><subject>Vertical velocities</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtOwzAQRS0EEqWwZmuJdej4kdeyankqFUgJ3Vqu47Sp0rg4aUV23fET8HP9EhyV2YzmztG90kXolsA9IaE_eh2n3tSj4AFjTjpDA-L3Fw_iczQAoNTjMY0u0VXTrMENDckAfSdGyQqn5aaspC3bDmcrbWyHTYEnpt5r1ZZ7jbOdXewqXbc4kZ22-KMp6yU-Hn7SrSOsrI6HX_xuZZ23FZ6VX_030fWyXWGn4VQr49bMbHoLZz3Xti374LmujHKx1-iikFWjb_73EGWPD9nk2Uvenl4m48RTJOKtV-QQFJSHMgx86XMAHqs4iheagM_8ItSagoKYc0f7AeWKEWB5lGvGA0IpG6K7k-3Wms-dblqxNjtbu0RBg9APGFAAR41OlLKmaawuxNaWG2k7QUD0ZQtXtpgKCqIvWxD2B7lGdBA</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Vulfson, Alexander</creator><creator>Nikolaev, Petr</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>202201</creationdate><title>Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity</title><author>Vulfson, Alexander ; Nikolaev, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-fd06f247a765a540049c989be10535f7ee20c09441845624c3103d8de3461223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>Atmospheric convection</topic><topic>Atmospheric turbulence</topic><topic>Boundary layers</topic><topic>Complementation</topic><topic>Convection</topic><topic>Energy dissipation</topic><topic>Kinetic energy</topic><topic>Mixed layer</topic><topic>Mixing length</topic><topic>Parameters</topic><topic>Similarity theory</topic><topic>Surface boundary layer</topic><topic>Surface layers</topic><topic>Theories</topic><topic>Turbulence</topic><topic>Turbulent transfer</topic><topic>Velocity</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vulfson, Alexander</creatorcontrib><creatorcontrib>Nikolaev, Petr</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vulfson, Alexander</au><au>Nikolaev, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2022-01</date><risdate>2022</risdate><volume>79</volume><issue>1</issue><spage>101</spage><epage>118</epage><pages>101-118</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Approximations of the turbulent moments of the atmospheric convective boundary layer are constructed based on a variant of the local similarity theory. As the basic parameters of this theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used. This specific choice of the basic parameters allows us to consider the coefficient of turbulent transfer and the dissipation of kinetic energy of the Prandtl turbulence theory as the forms of the local similarity. Therefore, the obtained approximations of the turbulent moments should be considered as natural complementation to the semiempirical turbulence theory. Moreover, within the atmospheric surface layer, the approximations of the new local similarity theory are identical to the relations of the Monin–Obukhov similarity theory (MOST). Therefore, the proposed approximations should be considered as a direct generalization of the MOST under free-convection conditions. The new approximations are compared with the relations of the known local similarity theories. The advantages and limitations of the new theory are discussed. The comparison of the approximations of the new local similarity theory with the field and laboratory experimental data indicates the high effectiveness of the proposed approach.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-20-0330.1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2022-01, Vol.79 (1), p.101-118
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_journals_2675630200
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Approximation
Atmospheric convection
Atmospheric turbulence
Boundary layers
Complementation
Convection
Energy dissipation
Kinetic energy
Mixed layer
Mixing length
Parameters
Similarity theory
Surface boundary layer
Surface layers
Theories
Turbulence
Turbulent transfer
Velocity
Vertical velocities
title Local Similarity Theory of Convective Turbulent Layer Using “Spectral” Prandtl Mixing Length and Second Moment of Vertical Velocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Similarity%20Theory%20of%20Convective%20Turbulent%20Layer%20Using%20%E2%80%9CSpectral%E2%80%9D%20Prandtl%20Mixing%20Length%20and%20Second%20Moment%20of%20Vertical%20Velocity&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Vulfson,%20Alexander&rft.date=2022-01&rft.volume=79&rft.issue=1&rft.spage=101&rft.epage=118&rft.pages=101-118&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-20-0330.1&rft_dat=%3Cproquest_cross%3E2675630200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675630200&rft_id=info:pmid/&rfr_iscdi=true