The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap
A model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analy...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2021-11, Vol.78 (11), p.3745 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 3745 |
container_title | Journal of the atmospheric sciences |
container_volume | 78 |
creator | Aiki, Hidenori Fukutomi, Yoshiki Kanno, Yuki Ogata, Tomomichi Toyoda, Takahiro Nakano, Hideyuki |
description | A model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analysis or a ray theory. A recent analytical study has derived an exact universal expression for the energy flux which can indicate the direction of the group velocity for linear shallow water waves at all latitudes. This analytical result is extended in the present study to a height-dependent framework for three-dimensional waves in the atmosphere. This is achieved by investigating the classical analytical solution of both equatorial and off-equatorial waves in a Boussinesq fluid. For the horizontal component of the energy flux, the same expression has been obtained between equatorial waves and off-equatorial waves in the height-dependent framework, which is linked to a scalar quantity inverted from the isentropic perturbation of Ertel’s potential vorticity. The expression of the vertical component of the energy flux requires computation of another scalar quantity that may be obtained from the meridional integral of geopotential anomaly in a wavenumber-frequency space. The exact version of the universal expression is explored and illustrated for three-dimensional waves induced by an idealized Madden-Julian Oscillation forcing in a basic model experiment. The zonal and vertical fluxes manifest the energy transfer of both equatorial Kelvin waves and off-equatorial Rossby waves with a smooth transition at around 10°S and around 10°N. The meridional flux of wave energy represents connection between off-equatorial divergence regions and equatorial convergence regions. |
doi_str_mv | 10.1175/JAS-D-20-0177.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675613908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675613908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-c46533306bea6a2b7cc09e8d734c54f36bb4410afaa68804b30ddc9f10742e3a3</originalsourceid><addsrcrecordid>eNotkElLA0EQRhtRMC5nrwWeJ-ltNm8hiRsBD-q5qempSVqS6Un3ROPRf-4ErUtRfI8P6jF2I_hYiDydPE9fk3kiecJFno_FCRuJ9HjprDxlI86lTHQpi3N2EeMHH0bmYsR-3tYE1FJYfUOz2R_AN9CvA1FSuy210fkWN_CFnxTBtUNEgP3Wx25Nge5gcUDbAx26QPHIQuMDIFQYnYWtr2kDtcNV66OL8OX6NbQeaLfH3gc3FK-wu2JnDW4iXf_vS_Z-v3ibPSbLl4en2XSZWCV4n1idpUopnlWEGcoqt5aXVNS50jbVjcqqSmvBsUHMioLrSvG6tmUjeK4lKVSX7Pavtwt-t6fYmw-_D8N30cgsTzOhSl4M1OSPssHHGKgxXXBbDN9GcHP0bAbPZm4kN0fPRqhfNjJySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675613908</pqid></control><display><type>article</type><title>The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Aiki, Hidenori ; Fukutomi, Yoshiki ; Kanno, Yuki ; Ogata, Tomomichi ; Toyoda, Takahiro ; Nakano, Hideyuki</creator><creatorcontrib>Aiki, Hidenori ; Fukutomi, Yoshiki ; Kanno, Yuki ; Ogata, Tomomichi ; Toyoda, Takahiro ; Nakano, Hideyuki</creatorcontrib><description>A model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analysis or a ray theory. A recent analytical study has derived an exact universal expression for the energy flux which can indicate the direction of the group velocity for linear shallow water waves at all latitudes. This analytical result is extended in the present study to a height-dependent framework for three-dimensional waves in the atmosphere. This is achieved by investigating the classical analytical solution of both equatorial and off-equatorial waves in a Boussinesq fluid. For the horizontal component of the energy flux, the same expression has been obtained between equatorial waves and off-equatorial waves in the height-dependent framework, which is linked to a scalar quantity inverted from the isentropic perturbation of Ertel’s potential vorticity. The expression of the vertical component of the energy flux requires computation of another scalar quantity that may be obtained from the meridional integral of geopotential anomaly in a wavenumber-frequency space. The exact version of the universal expression is explored and illustrated for three-dimensional waves induced by an idealized Madden-Julian Oscillation forcing in a basic model experiment. The zonal and vertical fluxes manifest the energy transfer of both equatorial Kelvin waves and off-equatorial Rossby waves with a smooth transition at around 10°S and around 10°N. The meridional flux of wave energy represents connection between off-equatorial divergence regions and equatorial convergence regions.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-20-0177.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Atmosphere ; Boussinesq approximation ; Boussinesq equations ; Computation ; Diagnosis ; Divergence ; Dynamic height ; Dynamic height anomaly ; Energy ; Energy flux ; Energy transfer ; Equator ; Equatorial regions ; Equatorial waves ; Exact solutions ; Fluctuations ; Geopotential ; Group velocity ; Height ; Kelvin waves ; Madden-Julian oscillation ; Mathematical analysis ; Perturbation ; Planetary waves ; Potential vorticity ; Rossby waves ; Shallow water ; Shallow water waves ; Spectral analysis ; Spectrum analysis ; Vorticity ; Water waves ; Wave energy ; Wave power ; Wavelengths</subject><ispartof>Journal of the atmospheric sciences, 2021-11, Vol.78 (11), p.3745</ispartof><rights>Copyright American Meteorological Society 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-c46533306bea6a2b7cc09e8d734c54f36bb4410afaa68804b30ddc9f10742e3a3</citedby><cites>FETCH-LOGICAL-c310t-c46533306bea6a2b7cc09e8d734c54f36bb4410afaa68804b30ddc9f10742e3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Aiki, Hidenori</creatorcontrib><creatorcontrib>Fukutomi, Yoshiki</creatorcontrib><creatorcontrib>Kanno, Yuki</creatorcontrib><creatorcontrib>Ogata, Tomomichi</creatorcontrib><creatorcontrib>Toyoda, Takahiro</creatorcontrib><creatorcontrib>Nakano, Hideyuki</creatorcontrib><title>The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap</title><title>Journal of the atmospheric sciences</title><description>A model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analysis or a ray theory. A recent analytical study has derived an exact universal expression for the energy flux which can indicate the direction of the group velocity for linear shallow water waves at all latitudes. This analytical result is extended in the present study to a height-dependent framework for three-dimensional waves in the atmosphere. This is achieved by investigating the classical analytical solution of both equatorial and off-equatorial waves in a Boussinesq fluid. For the horizontal component of the energy flux, the same expression has been obtained between equatorial waves and off-equatorial waves in the height-dependent framework, which is linked to a scalar quantity inverted from the isentropic perturbation of Ertel’s potential vorticity. The expression of the vertical component of the energy flux requires computation of another scalar quantity that may be obtained from the meridional integral of geopotential anomaly in a wavenumber-frequency space. The exact version of the universal expression is explored and illustrated for three-dimensional waves induced by an idealized Madden-Julian Oscillation forcing in a basic model experiment. The zonal and vertical fluxes manifest the energy transfer of both equatorial Kelvin waves and off-equatorial Rossby waves with a smooth transition at around 10°S and around 10°N. The meridional flux of wave energy represents connection between off-equatorial divergence regions and equatorial convergence regions.</description><subject>Atmosphere</subject><subject>Boussinesq approximation</subject><subject>Boussinesq equations</subject><subject>Computation</subject><subject>Diagnosis</subject><subject>Divergence</subject><subject>Dynamic height</subject><subject>Dynamic height anomaly</subject><subject>Energy</subject><subject>Energy flux</subject><subject>Energy transfer</subject><subject>Equator</subject><subject>Equatorial regions</subject><subject>Equatorial waves</subject><subject>Exact solutions</subject><subject>Fluctuations</subject><subject>Geopotential</subject><subject>Group velocity</subject><subject>Height</subject><subject>Kelvin waves</subject><subject>Madden-Julian oscillation</subject><subject>Mathematical analysis</subject><subject>Perturbation</subject><subject>Planetary waves</subject><subject>Potential vorticity</subject><subject>Rossby waves</subject><subject>Shallow water</subject><subject>Shallow water waves</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Vorticity</subject><subject>Water waves</subject><subject>Wave energy</subject><subject>Wave power</subject><subject>Wavelengths</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkElLA0EQRhtRMC5nrwWeJ-ltNm8hiRsBD-q5qempSVqS6Un3ROPRf-4ErUtRfI8P6jF2I_hYiDydPE9fk3kiecJFno_FCRuJ9HjprDxlI86lTHQpi3N2EeMHH0bmYsR-3tYE1FJYfUOz2R_AN9CvA1FSuy210fkWN_CFnxTBtUNEgP3Wx25Nge5gcUDbAx26QPHIQuMDIFQYnYWtr2kDtcNV66OL8OX6NbQeaLfH3gc3FK-wu2JnDW4iXf_vS_Z-v3ibPSbLl4en2XSZWCV4n1idpUopnlWEGcoqt5aXVNS50jbVjcqqSmvBsUHMioLrSvG6tmUjeK4lKVSX7Pavtwt-t6fYmw-_D8N30cgsTzOhSl4M1OSPssHHGKgxXXBbDN9GcHP0bAbPZm4kN0fPRqhfNjJySA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Aiki, Hidenori</creator><creator>Fukutomi, Yoshiki</creator><creator>Kanno, Yuki</creator><creator>Ogata, Tomomichi</creator><creator>Toyoda, Takahiro</creator><creator>Nakano, Hideyuki</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20211101</creationdate><title>The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap</title><author>Aiki, Hidenori ; Fukutomi, Yoshiki ; Kanno, Yuki ; Ogata, Tomomichi ; Toyoda, Takahiro ; Nakano, Hideyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-c46533306bea6a2b7cc09e8d734c54f36bb4410afaa68804b30ddc9f10742e3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Boussinesq approximation</topic><topic>Boussinesq equations</topic><topic>Computation</topic><topic>Diagnosis</topic><topic>Divergence</topic><topic>Dynamic height</topic><topic>Dynamic height anomaly</topic><topic>Energy</topic><topic>Energy flux</topic><topic>Energy transfer</topic><topic>Equator</topic><topic>Equatorial regions</topic><topic>Equatorial waves</topic><topic>Exact solutions</topic><topic>Fluctuations</topic><topic>Geopotential</topic><topic>Group velocity</topic><topic>Height</topic><topic>Kelvin waves</topic><topic>Madden-Julian oscillation</topic><topic>Mathematical analysis</topic><topic>Perturbation</topic><topic>Planetary waves</topic><topic>Potential vorticity</topic><topic>Rossby waves</topic><topic>Shallow water</topic><topic>Shallow water waves</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Vorticity</topic><topic>Water waves</topic><topic>Wave energy</topic><topic>Wave power</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiki, Hidenori</creatorcontrib><creatorcontrib>Fukutomi, Yoshiki</creatorcontrib><creatorcontrib>Kanno, Yuki</creatorcontrib><creatorcontrib>Ogata, Tomomichi</creatorcontrib><creatorcontrib>Toyoda, Takahiro</creatorcontrib><creatorcontrib>Nakano, Hideyuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiki, Hidenori</au><au>Fukutomi, Yoshiki</au><au>Kanno, Yuki</au><au>Ogata, Tomomichi</au><au>Toyoda, Takahiro</au><au>Nakano, Hideyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>78</volume><issue>11</issue><spage>3745</spage><pages>3745-</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>A model diagnosis for the energy flux of off-equatorial Rossby waves in the atmosphere has previously been done using quasi-geostrophic equations and is singular at the equator. The energy flux of equatorial waves has been separately investigated in previous studies using a space-time spectral analysis or a ray theory. A recent analytical study has derived an exact universal expression for the energy flux which can indicate the direction of the group velocity for linear shallow water waves at all latitudes. This analytical result is extended in the present study to a height-dependent framework for three-dimensional waves in the atmosphere. This is achieved by investigating the classical analytical solution of both equatorial and off-equatorial waves in a Boussinesq fluid. For the horizontal component of the energy flux, the same expression has been obtained between equatorial waves and off-equatorial waves in the height-dependent framework, which is linked to a scalar quantity inverted from the isentropic perturbation of Ertel’s potential vorticity. The expression of the vertical component of the energy flux requires computation of another scalar quantity that may be obtained from the meridional integral of geopotential anomaly in a wavenumber-frequency space. The exact version of the universal expression is explored and illustrated for three-dimensional waves induced by an idealized Madden-Julian Oscillation forcing in a basic model experiment. The zonal and vertical fluxes manifest the energy transfer of both equatorial Kelvin waves and off-equatorial Rossby waves with a smooth transition at around 10°S and around 10°N. The meridional flux of wave energy represents connection between off-equatorial divergence regions and equatorial convergence regions.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-20-0177.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2021-11, Vol.78 (11), p.3745 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_proquest_journals_2675613908 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Atmosphere Boussinesq approximation Boussinesq equations Computation Diagnosis Divergence Dynamic height Dynamic height anomaly Energy Energy flux Energy transfer Equator Equatorial regions Equatorial waves Exact solutions Fluctuations Geopotential Group velocity Height Kelvin waves Madden-Julian oscillation Mathematical analysis Perturbation Planetary waves Potential vorticity Rossby waves Shallow water Shallow water waves Spectral analysis Spectrum analysis Vorticity Water waves Wave energy Wave power Wavelengths |
title | The energy flux of three-dimensional waves in the atmosphere: Exact expression for a basic model diagnosis with no equatorial gap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20energy%20flux%20of%20three-dimensional%20waves%20in%20the%20atmosphere:%20Exact%20expression%20for%20a%20basic%20model%20diagnosis%20with%20no%20equatorial%20gap&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Aiki,%20Hidenori&rft.date=2021-11-01&rft.volume=78&rft.issue=11&rft.spage=3745&rft.pages=3745-&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-20-0177.1&rft_dat=%3Cproquest_cross%3E2675613908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675613908&rft_id=info:pmid/&rfr_iscdi=true |