Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model

Globally, extreme rainfall has intense impacts on ecosystems and human livelihoods. However, no effort has yet been made to forecast the extreme rainfall indices through machine learning techniques. In this paper, a new extreme rainfall indices forecasting model is proposed using a random forest (RF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2022-06, Vol.61 (6), p.651-667
Hauptverfasser: Uddin, Md. Jalal, Li, Yubin, Tamim, Md. Yahya, Miah, Md. Babul, Ahmed, S. M. Shahriar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 6
container_start_page 651
container_title Journal of applied meteorology and climatology
container_volume 61
creator Uddin, Md. Jalal
Li, Yubin
Tamim, Md. Yahya
Miah, Md. Babul
Ahmed, S. M. Shahriar
description Globally, extreme rainfall has intense impacts on ecosystems and human livelihoods. However, no effort has yet been made to forecast the extreme rainfall indices through machine learning techniques. In this paper, a new extreme rainfall indices forecasting model is proposed using a random forest (RF) model to provide effective forecasts of monthly extreme rainfall indices. In addition, RF feature importance is proposed in this study to identify the most and least important features for the proposed model. This study forecasts only statistically significant extreme rainfall indices over Bangladesh including consecutive dry days (CDD), the number of heavy rain days (R10mm; rainfall ≥ 10 mm), and the number of heavy rain days (R20mm; rainfall ≥ 20 mm) within 1–3 months of lead time. The proposed model uses monthly antecedent CDD, R10mm, and R20mm including atmospheric parameters and ocean–atmospheric teleconnections, namely, convective available potential energy (CAPE), relative humidity (RH), air temperature (TEM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and North Atlantic Oscillation (NAO), as the inputs to the model. Results show that the proposed model yields the best performance to forecast CDD, R10mm, and R20mm with only the antecedent of these indices as input. Ocean–atmospheric teleconnections (IOD, ENSO, and NAO) are useful for CDD forecasting, and local atmospheric parameters (CAPE, RH, and TEM) are useful for R10mm and R20mm forecasting. The results suggest that adding atmospheric parameters and ocean–atmospheric teleconnections is useful to forecast extreme rainfall indices.
doi_str_mv 10.1175/JAMC-D-21-0170.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2675593665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27240018</jstor_id><sourcerecordid>27240018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-be7b344c3a6fce7afcc1d350e7f2b8643830d85505a3f7d6a1568304fdfe06543</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhQdRsFb3boSA69H8TqbL0h-tVFqkXYc0c8dO6SQ1maLuBB_BN_RJTK0UV_dw-c45cJLkkuAbQqS4feg-9tJ-SkmKiYy_o6RFhMjTnDN6fNCUnyZnIaww5lxK0Uo-B2-NhxrQk65sqddrNLJFZSCgqYcomspZ9Fo1S9Rtahc2S_CVQVPtdQ0N-IC0LdDEgLbfH1__kRmswThr4TcioHmo7DPSsccWrkZD5yE06NEVsD5PTmJzgIu_207mw8Gsd5-OJ3ejXnecGtphTboAuWCcG6az0oDUpTGkYAKDLOkizzjLGS5yIbDQrJRFponI4ouXRQk4E5y1k-t97sa7l22sVyu39TZWKppJITosy0Sk8J4y3oXgoVQbX9XavyuC1W5qtZta9RUlaje1ItFytbesQuP8gaeScoxJzn4Axvt-Xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675593665</pqid></control><display><type>article</type><title>Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model</title><source>EZB Electronic Journals Library</source><source>AMS Journals (Meteorology)</source><creator>Uddin, Md. Jalal ; Li, Yubin ; Tamim, Md. Yahya ; Miah, Md. Babul ; Ahmed, S. M. Shahriar</creator><creatorcontrib>Uddin, Md. Jalal ; Li, Yubin ; Tamim, Md. Yahya ; Miah, Md. Babul ; Ahmed, S. M. Shahriar</creatorcontrib><description>Globally, extreme rainfall has intense impacts on ecosystems and human livelihoods. However, no effort has yet been made to forecast the extreme rainfall indices through machine learning techniques. In this paper, a new extreme rainfall indices forecasting model is proposed using a random forest (RF) model to provide effective forecasts of monthly extreme rainfall indices. In addition, RF feature importance is proposed in this study to identify the most and least important features for the proposed model. This study forecasts only statistically significant extreme rainfall indices over Bangladesh including consecutive dry days (CDD), the number of heavy rain days (R10mm; rainfall ≥ 10 mm), and the number of heavy rain days (R20mm; rainfall ≥ 20 mm) within 1–3 months of lead time. The proposed model uses monthly antecedent CDD, R10mm, and R20mm including atmospheric parameters and ocean–atmospheric teleconnections, namely, convective available potential energy (CAPE), relative humidity (RH), air temperature (TEM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and North Atlantic Oscillation (NAO), as the inputs to the model. Results show that the proposed model yields the best performance to forecast CDD, R10mm, and R20mm with only the antecedent of these indices as input. Ocean–atmospheric teleconnections (IOD, ENSO, and NAO) are useful for CDD forecasting, and local atmospheric parameters (CAPE, RH, and TEM) are useful for R10mm and R20mm forecasting. The results suggest that adding atmospheric parameters and ocean–atmospheric teleconnections is useful to forecast extreme rainfall indices.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-21-0170.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Air temperature ; Atmospheric forcing ; Convective available potential energy ; Dipoles ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Environmental impact ; Extreme values ; Extreme weather ; Forecasting ; Heavy rainfall ; Lead time ; Livelihoods ; Machine learning ; Mathematical models ; Modelling ; Monthly rainfall ; North Atlantic Oscillation ; Ocean-atmosphere system ; Oceans ; Parameters ; Potential energy ; Rain ; Rainfall ; Rainfall forecasting ; Relative humidity ; Southern Oscillation ; Statistical analysis ; Teleconnections</subject><ispartof>Journal of applied meteorology and climatology, 2022-06, Vol.61 (6), p.651-667</ispartof><rights>2022 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jun 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-be7b344c3a6fce7afcc1d350e7f2b8643830d85505a3f7d6a1568304fdfe06543</citedby><cites>FETCH-LOGICAL-c293t-be7b344c3a6fce7afcc1d350e7f2b8643830d85505a3f7d6a1568304fdfe06543</cites><orcidid>0000-0003-2640-1091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3667,27903,27904</link.rule.ids></links><search><creatorcontrib>Uddin, Md. Jalal</creatorcontrib><creatorcontrib>Li, Yubin</creatorcontrib><creatorcontrib>Tamim, Md. Yahya</creatorcontrib><creatorcontrib>Miah, Md. Babul</creatorcontrib><creatorcontrib>Ahmed, S. M. Shahriar</creatorcontrib><title>Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model</title><title>Journal of applied meteorology and climatology</title><description>Globally, extreme rainfall has intense impacts on ecosystems and human livelihoods. However, no effort has yet been made to forecast the extreme rainfall indices through machine learning techniques. In this paper, a new extreme rainfall indices forecasting model is proposed using a random forest (RF) model to provide effective forecasts of monthly extreme rainfall indices. In addition, RF feature importance is proposed in this study to identify the most and least important features for the proposed model. This study forecasts only statistically significant extreme rainfall indices over Bangladesh including consecutive dry days (CDD), the number of heavy rain days (R10mm; rainfall ≥ 10 mm), and the number of heavy rain days (R20mm; rainfall ≥ 20 mm) within 1–3 months of lead time. The proposed model uses monthly antecedent CDD, R10mm, and R20mm including atmospheric parameters and ocean–atmospheric teleconnections, namely, convective available potential energy (CAPE), relative humidity (RH), air temperature (TEM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and North Atlantic Oscillation (NAO), as the inputs to the model. Results show that the proposed model yields the best performance to forecast CDD, R10mm, and R20mm with only the antecedent of these indices as input. Ocean–atmospheric teleconnections (IOD, ENSO, and NAO) are useful for CDD forecasting, and local atmospheric parameters (CAPE, RH, and TEM) are useful for R10mm and R20mm forecasting. The results suggest that adding atmospheric parameters and ocean–atmospheric teleconnections is useful to forecast extreme rainfall indices.</description><subject>Air temperature</subject><subject>Atmospheric forcing</subject><subject>Convective available potential energy</subject><subject>Dipoles</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Environmental impact</subject><subject>Extreme values</subject><subject>Extreme weather</subject><subject>Forecasting</subject><subject>Heavy rainfall</subject><subject>Lead time</subject><subject>Livelihoods</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monthly rainfall</subject><subject>North Atlantic Oscillation</subject><subject>Ocean-atmosphere system</subject><subject>Oceans</subject><subject>Parameters</subject><subject>Potential energy</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Relative humidity</subject><subject>Southern Oscillation</subject><subject>Statistical analysis</subject><subject>Teleconnections</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhQdRsFb3boSA69H8TqbL0h-tVFqkXYc0c8dO6SQ1maLuBB_BN_RJTK0UV_dw-c45cJLkkuAbQqS4feg-9tJ-SkmKiYy_o6RFhMjTnDN6fNCUnyZnIaww5lxK0Uo-B2-NhxrQk65sqddrNLJFZSCgqYcomspZ9Fo1S9Rtahc2S_CVQVPtdQ0N-IC0LdDEgLbfH1__kRmswThr4TcioHmo7DPSsccWrkZD5yE06NEVsD5PTmJzgIu_207mw8Gsd5-OJ3ejXnecGtphTboAuWCcG6az0oDUpTGkYAKDLOkizzjLGS5yIbDQrJRFponI4ouXRQk4E5y1k-t97sa7l22sVyu39TZWKppJITosy0Sk8J4y3oXgoVQbX9XavyuC1W5qtZta9RUlaje1ItFytbesQuP8gaeScoxJzn4Axvt-Xg</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Uddin, Md. Jalal</creator><creator>Li, Yubin</creator><creator>Tamim, Md. Yahya</creator><creator>Miah, Md. Babul</creator><creator>Ahmed, S. M. Shahriar</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2640-1091</orcidid></search><sort><creationdate>20220601</creationdate><title>Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model</title><author>Uddin, Md. Jalal ; Li, Yubin ; Tamim, Md. Yahya ; Miah, Md. Babul ; Ahmed, S. M. Shahriar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-be7b344c3a6fce7afcc1d350e7f2b8643830d85505a3f7d6a1568304fdfe06543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Atmospheric forcing</topic><topic>Convective available potential energy</topic><topic>Dipoles</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Environmental impact</topic><topic>Extreme values</topic><topic>Extreme weather</topic><topic>Forecasting</topic><topic>Heavy rainfall</topic><topic>Lead time</topic><topic>Livelihoods</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monthly rainfall</topic><topic>North Atlantic Oscillation</topic><topic>Ocean-atmosphere system</topic><topic>Oceans</topic><topic>Parameters</topic><topic>Potential energy</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Relative humidity</topic><topic>Southern Oscillation</topic><topic>Statistical analysis</topic><topic>Teleconnections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Md. Jalal</creatorcontrib><creatorcontrib>Li, Yubin</creatorcontrib><creatorcontrib>Tamim, Md. Yahya</creatorcontrib><creatorcontrib>Miah, Md. Babul</creatorcontrib><creatorcontrib>Ahmed, S. M. Shahriar</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Md. Jalal</au><au>Li, Yubin</au><au>Tamim, Md. Yahya</au><au>Miah, Md. Babul</au><au>Ahmed, S. M. Shahriar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>61</volume><issue>6</issue><spage>651</spage><epage>667</epage><pages>651-667</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>Globally, extreme rainfall has intense impacts on ecosystems and human livelihoods. However, no effort has yet been made to forecast the extreme rainfall indices through machine learning techniques. In this paper, a new extreme rainfall indices forecasting model is proposed using a random forest (RF) model to provide effective forecasts of monthly extreme rainfall indices. In addition, RF feature importance is proposed in this study to identify the most and least important features for the proposed model. This study forecasts only statistically significant extreme rainfall indices over Bangladesh including consecutive dry days (CDD), the number of heavy rain days (R10mm; rainfall ≥ 10 mm), and the number of heavy rain days (R20mm; rainfall ≥ 20 mm) within 1–3 months of lead time. The proposed model uses monthly antecedent CDD, R10mm, and R20mm including atmospheric parameters and ocean–atmospheric teleconnections, namely, convective available potential energy (CAPE), relative humidity (RH), air temperature (TEM), El Niño–Southern Oscillation (ENSO), Indian Ocean dipole (IOD), and North Atlantic Oscillation (NAO), as the inputs to the model. Results show that the proposed model yields the best performance to forecast CDD, R10mm, and R20mm with only the antecedent of these indices as input. Ocean–atmospheric teleconnections (IOD, ENSO, and NAO) are useful for CDD forecasting, and local atmospheric parameters (CAPE, RH, and TEM) are useful for R10mm and R20mm forecasting. The results suggest that adding atmospheric parameters and ocean–atmospheric teleconnections is useful to forecast extreme rainfall indices.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-21-0170.1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2640-1091</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2022-06, Vol.61 (6), p.651-667
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_2675593665
source EZB Electronic Journals Library; AMS Journals (Meteorology)
subjects Air temperature
Atmospheric forcing
Convective available potential energy
Dipoles
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Environmental impact
Extreme values
Extreme weather
Forecasting
Heavy rainfall
Lead time
Livelihoods
Machine learning
Mathematical models
Modelling
Monthly rainfall
North Atlantic Oscillation
Ocean-atmosphere system
Oceans
Parameters
Potential energy
Rain
Rainfall
Rainfall forecasting
Relative humidity
Southern Oscillation
Statistical analysis
Teleconnections
title Extreme Rainfall Indices Prediction with Atmospheric Parameters and Ocean–Atmospheric Teleconnections Using a Random Forest Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20Rainfall%20Indices%20Prediction%20with%20Atmospheric%20Parameters%20and%20Ocean%E2%80%93Atmospheric%20Teleconnections%20Using%20a%20Random%20Forest%20Model&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Uddin,%20Md.%20Jalal&rft.date=2022-06-01&rft.volume=61&rft.issue=6&rft.spage=651&rft.epage=667&rft.pages=651-667&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/JAMC-D-21-0170.1&rft_dat=%3Cjstor_proqu%3E27240018%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675593665&rft_id=info:pmid/&rft_jstor_id=27240018&rfr_iscdi=true