Al–Cu Powder Oxidation Kinetics during Heating in Air

The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2022-04, Vol.58 (2), p.159-168
Hauptverfasser: Korotkikh, A. G., Godunov, A. B., Sorokin, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue 2
container_start_page 159
container_title Combustion, explosion, and shock waves
container_volume 58
creator Korotkikh, A. G.
Godunov, A. B.
Sorokin, I. V.
description The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scanning calorimetry) of Alex aluminum nanopowders and a Al–Cu compound, obtained via electrical explosion of conductors, are presented at constant heating rates of 2, 4, and 20°C /min in air in a temperature range of 30–1300°C . It is revealed that Alex and Al–Cu nanopowders are intensely oxidized when heated in air to a temperature of 600°C due to the oxidizer diffusion through the porous oxide layer Al 2 O 3  and the possible formation of open surfaces of an active metal during a phase change in the crystal lattice of the metal oxide. The Friedman and Kissinger–Akahira–Sunose methods were used to obtain dependences between the activation oxidation energy on the degree of conversion (oxidation) of nanosized metal powders. It is shown that the activation energy of Alex and Al–Cu nanopowders depends on the degree of conversion (oxidation stages) and lies in ranges of 78–307 and 99–430 kJ/mol, respectively.
doi_str_mv 10.1134/S0010508222020046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675235997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675235997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2a38bb408a48f8452d18b3f4c8469108b9c6acd34502d394e68c97fbbcbc6fb33</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaJgHf0AdwXX1Ztn02Up6ogDI6jrkqSpZBjbmrSoO__BP_RLTBnBhbg6cM_j3nsQOsVwjjFlF_cAGDhIQggQACb2UIJ5TjNJGd9HyUxnM3-IjkLYAAAhTCQoL7dfH5_VlN71r4316frNNWp0fZfeus6OzoS0mbzrntKljfOIrktL54_RQau2wZ784AI9Xl0-VMtstb6-qcpVZmL8mBFFpdYMpGKylYyTBktNW2YkEwUGqQsjlGnijUAaWjArpCnyVmujjWg1pQt0tssdfP8y2TDWm37yXVxZE5FzQnlR5FGFdyrj-xC8bevBu2fl32sM9dxP_aef6CE7Txjm_6z_Tf7f9A0AimWz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675235997</pqid></control><display><type>article</type><title>Al–Cu Powder Oxidation Kinetics during Heating in Air</title><source>SpringerLink Journals - AutoHoldings</source><creator>Korotkikh, A. G. ; Godunov, A. B. ; Sorokin, I. V.</creator><creatorcontrib>Korotkikh, A. G. ; Godunov, A. B. ; Sorokin, I. V.</creatorcontrib><description>The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scanning calorimetry) of Alex aluminum nanopowders and a Al–Cu compound, obtained via electrical explosion of conductors, are presented at constant heating rates of 2, 4, and 20°C /min in air in a temperature range of 30–1300°C . It is revealed that Alex and Al–Cu nanopowders are intensely oxidized when heated in air to a temperature of 600°C due to the oxidizer diffusion through the porous oxide layer Al 2 O 3  and the possible formation of open surfaces of an active metal during a phase change in the crystal lattice of the metal oxide. The Friedman and Kissinger–Akahira–Sunose methods were used to obtain dependences between the activation oxidation energy on the degree of conversion (oxidation) of nanosized metal powders. It is shown that the activation energy of Alex and Al–Cu nanopowders depends on the degree of conversion (oxidation stages) and lies in ranges of 78–307 and 99–430 kJ/mol, respectively.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508222020046</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Activation energy ; Aluminum oxide ; Classical and Continuum Physics ; Classical Mechanics ; Conductors ; Control ; Conversion ; Copper ; Crystal lattices ; Differential scanning calorimetry ; Diffusion layers ; Dynamical Systems ; Electric contacts ; Engineering ; Heating ; Metal oxides ; Metal powders ; Oxidation ; Oxidizing agents ; Physical Chemistry ; Physics ; Physics and Astronomy ; Reaction kinetics ; Thermogravimetric analysis ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2022-04, Vol.58 (2), p.159-168</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-2a38bb408a48f8452d18b3f4c8469108b9c6acd34502d394e68c97fbbcbc6fb33</citedby><cites>FETCH-LOGICAL-c246t-2a38bb408a48f8452d18b3f4c8469108b9c6acd34502d394e68c97fbbcbc6fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508222020046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508222020046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Korotkikh, A. G.</creatorcontrib><creatorcontrib>Godunov, A. B.</creatorcontrib><creatorcontrib>Sorokin, I. V.</creatorcontrib><title>Al–Cu Powder Oxidation Kinetics during Heating in Air</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scanning calorimetry) of Alex aluminum nanopowders and a Al–Cu compound, obtained via electrical explosion of conductors, are presented at constant heating rates of 2, 4, and 20°C /min in air in a temperature range of 30–1300°C . It is revealed that Alex and Al–Cu nanopowders are intensely oxidized when heated in air to a temperature of 600°C due to the oxidizer diffusion through the porous oxide layer Al 2 O 3  and the possible formation of open surfaces of an active metal during a phase change in the crystal lattice of the metal oxide. The Friedman and Kissinger–Akahira–Sunose methods were used to obtain dependences between the activation oxidation energy on the degree of conversion (oxidation) of nanosized metal powders. It is shown that the activation energy of Alex and Al–Cu nanopowders depends on the degree of conversion (oxidation stages) and lies in ranges of 78–307 and 99–430 kJ/mol, respectively.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Conductors</subject><subject>Control</subject><subject>Conversion</subject><subject>Copper</subject><subject>Crystal lattices</subject><subject>Differential scanning calorimetry</subject><subject>Diffusion layers</subject><subject>Dynamical Systems</subject><subject>Electric contacts</subject><subject>Engineering</subject><subject>Heating</subject><subject>Metal oxides</subject><subject>Metal powders</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction kinetics</subject><subject>Thermogravimetric analysis</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaJgHf0AdwXX1Ztn02Up6ogDI6jrkqSpZBjbmrSoO__BP_RLTBnBhbg6cM_j3nsQOsVwjjFlF_cAGDhIQggQACb2UIJ5TjNJGd9HyUxnM3-IjkLYAAAhTCQoL7dfH5_VlN71r4316frNNWp0fZfeus6OzoS0mbzrntKljfOIrktL54_RQau2wZ784AI9Xl0-VMtstb6-qcpVZmL8mBFFpdYMpGKylYyTBktNW2YkEwUGqQsjlGnijUAaWjArpCnyVmujjWg1pQt0tssdfP8y2TDWm37yXVxZE5FzQnlR5FGFdyrj-xC8bevBu2fl32sM9dxP_aef6CE7Txjm_6z_Tf7f9A0AimWz</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Korotkikh, A. G.</creator><creator>Godunov, A. B.</creator><creator>Sorokin, I. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Al–Cu Powder Oxidation Kinetics during Heating in Air</title><author>Korotkikh, A. G. ; Godunov, A. B. ; Sorokin, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2a38bb408a48f8452d18b3f4c8469108b9c6acd34502d394e68c97fbbcbc6fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Conductors</topic><topic>Control</topic><topic>Conversion</topic><topic>Copper</topic><topic>Crystal lattices</topic><topic>Differential scanning calorimetry</topic><topic>Diffusion layers</topic><topic>Dynamical Systems</topic><topic>Electric contacts</topic><topic>Engineering</topic><topic>Heating</topic><topic>Metal oxides</topic><topic>Metal powders</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction kinetics</topic><topic>Thermogravimetric analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Korotkikh, A. G.</creatorcontrib><creatorcontrib>Godunov, A. B.</creatorcontrib><creatorcontrib>Sorokin, I. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Korotkikh, A. G.</au><au>Godunov, A. B.</au><au>Sorokin, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Al–Cu Powder Oxidation Kinetics during Heating in Air</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>58</volume><issue>2</issue><spage>159</spage><epage>168</epage><pages>159-168</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>The use of nanosized metal powders is a promising direction in the development of modern energy compositions due to their high reactivity and intense heat release upon contact with an oxidizer and during combustion. The results of a combined analysis (thermogravimetric analysis and differential scanning calorimetry) of Alex aluminum nanopowders and a Al–Cu compound, obtained via electrical explosion of conductors, are presented at constant heating rates of 2, 4, and 20°C /min in air in a temperature range of 30–1300°C . It is revealed that Alex and Al–Cu nanopowders are intensely oxidized when heated in air to a temperature of 600°C due to the oxidizer diffusion through the porous oxide layer Al 2 O 3  and the possible formation of open surfaces of an active metal during a phase change in the crystal lattice of the metal oxide. The Friedman and Kissinger–Akahira–Sunose methods were used to obtain dependences between the activation oxidation energy on the degree of conversion (oxidation) of nanosized metal powders. It is shown that the activation energy of Alex and Al–Cu nanopowders depends on the degree of conversion (oxidation stages) and lies in ranges of 78–307 and 99–430 kJ/mol, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508222020046</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2022-04, Vol.58 (2), p.159-168
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2675235997
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Aluminum oxide
Classical and Continuum Physics
Classical Mechanics
Conductors
Control
Conversion
Copper
Crystal lattices
Differential scanning calorimetry
Diffusion layers
Dynamical Systems
Electric contacts
Engineering
Heating
Metal oxides
Metal powders
Oxidation
Oxidizing agents
Physical Chemistry
Physics
Physics and Astronomy
Reaction kinetics
Thermogravimetric analysis
Vibration
title Al–Cu Powder Oxidation Kinetics during Heating in Air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Al%E2%80%93Cu%20Powder%20Oxidation%20Kinetics%20during%20Heating%20in%20Air&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Korotkikh,%20A.%20G.&rft.date=2022-04-01&rft.volume=58&rft.issue=2&rft.spage=159&rft.epage=168&rft.pages=159-168&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508222020046&rft_dat=%3Cproquest_cross%3E2675235997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675235997&rft_id=info:pmid/&rfr_iscdi=true