On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions

Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2022-06, Vol.28 (3), Article 55
1. Verfasser: Zlotnikov, Ilya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 28
creator Zlotnikov, Ilya
description Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2 such that every bandlimited signal f admits a stable reconstruction from the samples { f ∗ G α ( λ ) } λ ∈ Λ .
doi_str_mv 10.1007/s00041-022-09948-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2675235624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706798733</galeid><sourcerecordid>A706798733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2240-f27f5b8fbe583d8967f43371e0f0b2786d3b3a76288b87394f5749ed4a6e7e243</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOKdfwKeAz503SZukj3O4-WcwYfoc0jaZGW1akw7x2xtXwTe5D_dyOb97LidJrjHMMAC_DQCQ4RQISaEoMpHCSTLBOcVpLnJ8GmdgRZxZcZ5chLAHIJhyOkmeNg69NMopj7aq7RvrdujTDu9opQ4hWOXQs_ZON8g6tO1VpQPqDLpTrm5sawddo-XBVYPtXLhMzoxqgr767dPkbXn_unhI15vV42K-TitCMkgN4SYvhSl1LmgtCsZNRinHGgyUhAtW05IqzogQpeC0yEzOs0LXmWKaa5LRaXIz3u1993HQYZD77uBdtJSE8ZzQnB1Vs1G1U42W1plu8KqKVevWVp3Txsb9nAPjRbShESAjUPkuBK-N7L1tlf-SGORPyHIMWcaQ5TFkCRGiIxSi2O20__vlH-obs6N9IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675235624</pqid></control><display><type>article</type><title>On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions</title><source>Springer Nature - Complete Springer Journals</source><creator>Zlotnikov, Ilya</creator><creatorcontrib>Zlotnikov, Ilya</creatorcontrib><description>Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2 such that every bandlimited signal f admits a stable reconstruction from the samples { f ∗ G α ( λ ) } λ ∈ Λ .</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-022-09948-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2022-06, Vol.28 (3), Article 55</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2240-f27f5b8fbe583d8967f43371e0f0b2786d3b3a76288b87394f5749ed4a6e7e243</cites><orcidid>0000-0002-1162-4033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-022-09948-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-022-09948-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Zlotnikov, Ilya</creatorcontrib><title>On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2 such that every bandlimited signal f admits a stable reconstruction from the samples { f ∗ G α ( λ ) } λ ∈ Λ .</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYsoOKdfwKeAz503SZukj3O4-WcwYfoc0jaZGW1akw7x2xtXwTe5D_dyOb97LidJrjHMMAC_DQCQ4RQISaEoMpHCSTLBOcVpLnJ8GmdgRZxZcZ5chLAHIJhyOkmeNg69NMopj7aq7RvrdujTDu9opQ4hWOXQs_ZON8g6tO1VpQPqDLpTrm5sawddo-XBVYPtXLhMzoxqgr767dPkbXn_unhI15vV42K-TitCMkgN4SYvhSl1LmgtCsZNRinHGgyUhAtW05IqzogQpeC0yEzOs0LXmWKaa5LRaXIz3u1993HQYZD77uBdtJSE8ZzQnB1Vs1G1U42W1plu8KqKVevWVp3Txsb9nAPjRbShESAjUPkuBK-N7L1tlf-SGORPyHIMWcaQ5TFkCRGiIxSi2O20__vlH-obs6N9IQ</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zlotnikov, Ilya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1162-4033</orcidid></search><sort><creationdate>20220601</creationdate><title>On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions</title><author>Zlotnikov, Ilya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2240-f27f5b8fbe583d8967f43371e0f0b2786d3b3a76288b87394f5749ed4a6e7e243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zlotnikov, Ilya</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zlotnikov, Ilya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>28</volume><issue>3</issue><artnum>55</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>Let I = ( a , b ) × ( c , d ) ⊂ R + 2 be an index set and let { G α ( x ) } α ∈ I be a collection of Gaussian functions, i.e. G α ( x ) = exp ( - α 1 x 1 2 - α 2 x 2 2 ) , where α = ( α 1 , α 2 ) ∈ I , x = ( x 1 , x 2 ) ∈ R 2 . We present a complete description of the uniformly discrete sets Λ ⊂ R 2 such that every bandlimited signal f admits a stable reconstruction from the samples { f ∗ G α ( λ ) } λ ∈ Λ .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-022-09948-0</doi><orcidid>https://orcid.org/0000-0002-1162-4033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2022-06, Vol.28 (3), Article 55
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2675235624
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title On Planar Sampling with Gaussian Kernel in Spaces of Bandlimited Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Planar%20Sampling%20with%20Gaussian%20Kernel%20in%20Spaces%20of%20Bandlimited%20Functions&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Zlotnikov,%20Ilya&rft.date=2022-06-01&rft.volume=28&rft.issue=3&rft.artnum=55&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-022-09948-0&rft_dat=%3Cgale_proqu%3EA706798733%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675235624&rft_id=info:pmid/&rft_galeid=A706798733&rfr_iscdi=true