Sparse noncommutative polynomial optimization

This article focuses on optimization of polynomials in noncommuting variables, while taking into account sparsity in the input data. A converging hierarchy of semidefinite relaxations for eigenvalue and trace optimization is provided. This hierarchy is a noncommutative analogue of results due to Las...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical Programming, Series A Series A, 2022-06, Vol.193 (2), p.789-829
Hauptverfasser: Klep, Igor, Magron, Victor, Povh, Janez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article focuses on optimization of polynomials in noncommuting variables, while taking into account sparsity in the input data. A converging hierarchy of semidefinite relaxations for eigenvalue and trace optimization is provided. This hierarchy is a noncommutative analogue of results due to Lasserre (SIAM J Optim 17(3):822–843, 2006) and Waki et al. (SIAM J Optim 17(1):218–242, 2006). The Gelfand–Naimark–Segal construction is applied to extract optimizers if flatness and irreducibility conditions are satisfied. Among the main techniques used are amalgamation results from operator algebra. The theoretical results are utilized to compute lower bounds on minimal eigenvalue of noncommutative polynomials from the literature.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-020-01610-1