In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN

For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2022-07, Vol.121 (1-2), p.903-917
Hauptverfasser: Jamnikar, Noopur Dilip, Liu, Sen, Brice, Craig, Zhang, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 917
container_issue 1-2
container_start_page 903
container_title International journal of advanced manufacturing technology
container_volume 121
creator Jamnikar, Noopur Dilip
Liu, Sen
Brice, Craig
Zhang, Xiaoli
description For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.
doi_str_mv 10.1007/s00170-022-09248-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675083859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675083859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApxW4mzwTxI7R1T-KlVwgbPlJusSlMTFdkF9BN4alyJx47Sr1cys5iPknLNLzpi6ioxxxSgTgrJaFJrKAzLhhZRUMl4ekgkTVT6qSh-TkxjfsrzilZ6Qr_lI18E3GCM0flgHfMUxdh8IeW27JnV-BO9gibaFFfoBU9iC8wF6GzHAZxeQOsQWbm5vIG5jwgE2sRtXMPg-4Qhr73uIu9B8a22yYMcWhk2fOjr41vZd2sLs8fGUHDnbRzz7nVPycnf7PHugi6f7-ex6QRtR1IlWruKuKGzZLnkja142tWJ8ydDWyAuulWiEKHM3x5iullaptnCFRq2lFMo6OSUX-9xc-32DMZk3vwljfmlEpUqmpS7rrBJ7VRN8jAGdWYdusGFrODM75GaP3GTk5ge5kdkk96aYxeMKw1_0P65vywGFEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675083859</pqid></control><display><type>article</type><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><source>SpringerNature Journals</source><creator>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</creator><creatorcontrib>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</creatorcontrib><description>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09248-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Artificial neural networks ; CAE) and Design ; Computer-Aided Engineering (CAD ; Deep learning ; Engineering ; Geometry ; Industrial and Production Engineering ; Lasers ; Machine learning ; Manufacturing ; Mechanical Engineering ; Media Management ; Melt pools ; Monitoring ; Optimization ; Original Article ; Parameters ; Quality assurance ; Quality control ; R&amp;D ; Real time ; Regression models ; Research &amp; development ; Support vector machines ; Wire</subject><ispartof>International journal of advanced manufacturing technology, 2022-07, Vol.121 (1-2), p.903-917</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</citedby><cites>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09248-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09248-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jamnikar, Noopur Dilip</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Brice, Craig</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</description><subject>Additive manufacturing</subject><subject>Artificial neural networks</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Industrial and Production Engineering</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Melt pools</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>R&amp;D</subject><subject>Real time</subject><subject>Regression models</subject><subject>Research &amp; development</subject><subject>Support vector machines</subject><subject>Wire</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApxW4mzwTxI7R1T-KlVwgbPlJusSlMTFdkF9BN4alyJx47Sr1cys5iPknLNLzpi6ioxxxSgTgrJaFJrKAzLhhZRUMl4ekgkTVT6qSh-TkxjfsrzilZ6Qr_lI18E3GCM0flgHfMUxdh8IeW27JnV-BO9gibaFFfoBU9iC8wF6GzHAZxeQOsQWbm5vIG5jwgE2sRtXMPg-4Qhr73uIu9B8a22yYMcWhk2fOjr41vZd2sLs8fGUHDnbRzz7nVPycnf7PHugi6f7-ex6QRtR1IlWruKuKGzZLnkja142tWJ8ydDWyAuulWiEKHM3x5iullaptnCFRq2lFMo6OSUX-9xc-32DMZk3vwljfmlEpUqmpS7rrBJ7VRN8jAGdWYdusGFrODM75GaP3GTk5ge5kdkk96aYxeMKw1_0P65vywGFEg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jamnikar, Noopur Dilip</creator><creator>Liu, Sen</creator><creator>Brice, Craig</creator><creator>Zhang, Xiaoli</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><author>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Artificial neural networks</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Industrial and Production Engineering</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Melt pools</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>R&amp;D</topic><topic>Real time</topic><topic>Regression models</topic><topic>Research &amp; development</topic><topic>Support vector machines</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamnikar, Noopur Dilip</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Brice, Craig</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamnikar, Noopur Dilip</au><au>Liu, Sen</au><au>Brice, Craig</au><au>Zhang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>121</volume><issue>1-2</issue><spage>903</spage><epage>917</epage><pages>903-917</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09248-3</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2022-07, Vol.121 (1-2), p.903-917
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2675083859
source SpringerNature Journals
subjects Additive manufacturing
Artificial neural networks
CAE) and Design
Computer-Aided Engineering (CAD
Deep learning
Engineering
Geometry
Industrial and Production Engineering
Lasers
Machine learning
Manufacturing
Mechanical Engineering
Media Management
Melt pools
Monitoring
Optimization
Original Article
Parameters
Quality assurance
Quality control
R&D
Real time
Regression models
Research & development
Support vector machines
Wire
title In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-process%20comprehensive%20prediction%20of%20bead%20geometry%20for%20laser%20wire-feed%20DED%20system%20using%20molten%20pool%20sensing%20data%20and%20multi-modality%20CNN&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jamnikar,%20Noopur%20Dilip&rft.date=2022-07-01&rft.volume=121&rft.issue=1-2&rft.spage=903&rft.epage=917&rft.pages=903-917&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09248-3&rft_dat=%3Cproquest_cross%3E2675083859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675083859&rft_id=info:pmid/&rfr_iscdi=true