In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN
For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring...
Gespeichert in:
Veröffentlicht in: | International journal of advanced manufacturing technology 2022-07, Vol.121 (1-2), p.903-917 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 917 |
---|---|
container_issue | 1-2 |
container_start_page | 903 |
container_title | International journal of advanced manufacturing technology |
container_volume | 121 |
creator | Jamnikar, Noopur Dilip Liu, Sen Brice, Craig Zhang, Xiaoli |
description | For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system. |
doi_str_mv | 10.1007/s00170-022-09248-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675083859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675083859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApxW4mzwTxI7R1T-KlVwgbPlJusSlMTFdkF9BN4alyJx47Sr1cys5iPknLNLzpi6ioxxxSgTgrJaFJrKAzLhhZRUMl4ekgkTVT6qSh-TkxjfsrzilZ6Qr_lI18E3GCM0flgHfMUxdh8IeW27JnV-BO9gibaFFfoBU9iC8wF6GzHAZxeQOsQWbm5vIG5jwgE2sRtXMPg-4Qhr73uIu9B8a22yYMcWhk2fOjr41vZd2sLs8fGUHDnbRzz7nVPycnf7PHugi6f7-ex6QRtR1IlWruKuKGzZLnkja142tWJ8ydDWyAuulWiEKHM3x5iullaptnCFRq2lFMo6OSUX-9xc-32DMZk3vwljfmlEpUqmpS7rrBJ7VRN8jAGdWYdusGFrODM75GaP3GTk5ge5kdkk96aYxeMKw1_0P65vywGFEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675083859</pqid></control><display><type>article</type><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><source>SpringerNature Journals</source><creator>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</creator><creatorcontrib>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</creatorcontrib><description>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-022-09248-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Additive manufacturing ; Artificial neural networks ; CAE) and Design ; Computer-Aided Engineering (CAD ; Deep learning ; Engineering ; Geometry ; Industrial and Production Engineering ; Lasers ; Machine learning ; Manufacturing ; Mechanical Engineering ; Media Management ; Melt pools ; Monitoring ; Optimization ; Original Article ; Parameters ; Quality assurance ; Quality control ; R&D ; Real time ; Regression models ; Research & development ; Support vector machines ; Wire</subject><ispartof>International journal of advanced manufacturing technology, 2022-07, Vol.121 (1-2), p.903-917</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</citedby><cites>FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-022-09248-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-022-09248-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jamnikar, Noopur Dilip</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Brice, Craig</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</description><subject>Additive manufacturing</subject><subject>Artificial neural networks</subject><subject>CAE) and Design</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Geometry</subject><subject>Industrial and Production Engineering</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Media Management</subject><subject>Melt pools</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Quality assurance</subject><subject>Quality control</subject><subject>R&D</subject><subject>Real time</subject><subject>Regression models</subject><subject>Research & development</subject><subject>Support vector machines</subject><subject>Wire</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApxW4mzwTxI7R1T-KlVwgbPlJusSlMTFdkF9BN4alyJx47Sr1cys5iPknLNLzpi6ioxxxSgTgrJaFJrKAzLhhZRUMl4ekgkTVT6qSh-TkxjfsrzilZ6Qr_lI18E3GCM0flgHfMUxdh8IeW27JnV-BO9gibaFFfoBU9iC8wF6GzHAZxeQOsQWbm5vIG5jwgE2sRtXMPg-4Qhr73uIu9B8a22yYMcWhk2fOjr41vZd2sLs8fGUHDnbRzz7nVPycnf7PHugi6f7-ex6QRtR1IlWruKuKGzZLnkja142tWJ8ydDWyAuulWiEKHM3x5iullaptnCFRq2lFMo6OSUX-9xc-32DMZk3vwljfmlEpUqmpS7rrBJ7VRN8jAGdWYdusGFrODM75GaP3GTk5ge5kdkk96aYxeMKw1_0P65vywGFEg</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Jamnikar, Noopur Dilip</creator><creator>Liu, Sen</creator><creator>Brice, Craig</creator><creator>Zhang, Xiaoli</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220701</creationdate><title>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</title><author>Jamnikar, Noopur Dilip ; Liu, Sen ; Brice, Craig ; Zhang, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-6f61f44a5db1c3915c9701b0ea9e141872c225168f0086ba77d4f48e883327af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Artificial neural networks</topic><topic>CAE) and Design</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Geometry</topic><topic>Industrial and Production Engineering</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Media Management</topic><topic>Melt pools</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Quality assurance</topic><topic>Quality control</topic><topic>R&D</topic><topic>Real time</topic><topic>Regression models</topic><topic>Research & development</topic><topic>Support vector machines</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamnikar, Noopur Dilip</creatorcontrib><creatorcontrib>Liu, Sen</creatorcontrib><creatorcontrib>Brice, Craig</creatorcontrib><creatorcontrib>Zhang, Xiaoli</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamnikar, Noopur Dilip</au><au>Liu, Sen</au><au>Brice, Craig</au><au>Zhang, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>121</volume><issue>1-2</issue><spage>903</spage><epage>917</epage><pages>903-917</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>For wire-feed laser additive manufacturing (WLAM), the build geometrical parameters are one of the indicators of build quality; thus, it is crucial to monitor the geometrical parameters in real-time for quality assurance. However, the current research and development for in situ geometry monitoring are in the early phase due to interweaved correlation of the sensing data and their comprehensive effects on the bead geometry, as well as the high characterization cost to model these effects. This paper focuses on using machine learning techniques to enable in-process geometry monitoring by comprehensively modeling the correlation between the real-time molten pool sensing data and bead geometry properties. A deep learning-based multi-modality convolutional neural network (m-CNN) is trained to take the molten pool image and thermal profile as the input to comprehensively estimate the geometric properties of the build bead. The network is configured by the hyperparameter optimization process and experimentally validated by the real-time molten pool sensing data collected on a wire-feed laser additive manufacturing (AM) system. The effect of using the temperature data from the leading, center, and tailing positions of the molten pool on the prediction performance of the CNN model is studied and analyzed. The CNN model’s performance is compared with a support vector regression model for comparison. The developed model represents an in-process monitoring framework for real-time estimation of post-processing bead geometric properties and takes a step towards developing in situ quality control strategy for the metal AM system.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-022-09248-3</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-3768 |
ispartof | International journal of advanced manufacturing technology, 2022-07, Vol.121 (1-2), p.903-917 |
issn | 0268-3768 1433-3015 |
language | eng |
recordid | cdi_proquest_journals_2675083859 |
source | SpringerNature Journals |
subjects | Additive manufacturing Artificial neural networks CAE) and Design Computer-Aided Engineering (CAD Deep learning Engineering Geometry Industrial and Production Engineering Lasers Machine learning Manufacturing Mechanical Engineering Media Management Melt pools Monitoring Optimization Original Article Parameters Quality assurance Quality control R&D Real time Regression models Research & development Support vector machines Wire |
title | In-process comprehensive prediction of bead geometry for laser wire-feed DED system using molten pool sensing data and multi-modality CNN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-process%20comprehensive%20prediction%20of%20bead%20geometry%20for%20laser%20wire-feed%20DED%20system%20using%20molten%20pool%20sensing%20data%20and%20multi-modality%20CNN&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Jamnikar,%20Noopur%20Dilip&rft.date=2022-07-01&rft.volume=121&rft.issue=1-2&rft.spage=903&rft.epage=917&rft.pages=903-917&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-022-09248-3&rft_dat=%3Cproquest_cross%3E2675083859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675083859&rft_id=info:pmid/&rfr_iscdi=true |