A 10-Year Climatology of Midlevel Mesoscale Vortices in China

The mesoscale vortex (MV) is an important rain-producing system. In this study, the reanalysis data and satellite precipitation products are used to classify MVs into three categories: mesoscale convective vortex (MCV), mesoscale stratiform vortex (MSV), and mesoscale dry vortex (MDV). Then, these t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2022-04, Vol.61 (4), p.309-328
Hauptverfasser: Shu, Yu, Sun, Jisong, Chenlu, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 4
container_start_page 309
container_title Journal of applied meteorology and climatology
container_volume 61
creator Shu, Yu
Sun, Jisong
Chenlu, Jin
description The mesoscale vortex (MV) is an important rain-producing system. In this study, the reanalysis data and satellite precipitation products are used to classify MVs into three categories: mesoscale convective vortex (MCV), mesoscale stratiform vortex (MSV), and mesoscale dry vortex (MDV). Then, these three categories of midlevel MVs in China from 2007 to 2016 are investigated. A total of 21 053 MVs are obtained. Most MVs form in the northwest of parent convection, and 45% of MVs generate secondary convection. The Tibetan Plateau is the main MV source region. Steered by the westerlies, MVs mainly move eastward. MCV is active in summer, MDV in winter, and MSV in spring and autumn. MCV diurnal variations are closely related to local topography, and MDVs mainly form around midnight. Composite analyses show that MCVs form near the high-value center of convective available potential energy at the development stage of parent convection. The composite MCV forms near the low pressure trough and the thermal ridge at 500 hPa, and a low-level jet exists to the south of the MCV center. At the initiation and maturity stages of MCV, strong convergence and divergence respectively exist at low levels and 400 hPa. The vortex circulation mainly locates near 500 hPa. Above the vortex is a warm core associated with the latent heat release, and below is a cold anomaly related to the cold pool. In the downshear region, there is strong low-level convergence and ascending motion, higher humidity, and greater latent heat release, which favor the formation of secondary convection.
doi_str_mv 10.1175/JAMC-D-21-0095.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2675024555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675024555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-1036d96db718f59c3b55ba12952192585f635daa87c8849a4a8ee59e877a2a893</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWKt3jwHPqXmTvJvk4KFs_aSLFxU8hXQ3q1vWpiZbof_eloqnmcMwwzyEXAKfAGi8fppWJZsxAYxzixM4IiNANMwoKY7_vVCn5CznJedKaY0jcjOlwNl78ImWffflh9jHjy2NLa26pg8_oadVyDHXvg_0Laahq0Om3YqWn93Kn5OT1vc5XPzpmLze3b6UD2z-fP9YTuesliAHBlwWjS2ahQbToq3lAnHhQVgUYAUabAuJjfdG18Yo65U3IaANRmsvvLFyTK4OvesUvzchD24ZN2m1m3Si0MiFQsRdih9SdYo5p9C6ddpdSlsH3O0huT0kN3MC3B6SA_kL26pXkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675024555</pqid></control><display><type>article</type><title>A 10-Year Climatology of Midlevel Mesoscale Vortices in China</title><source>EZB-FREE-00999 freely available EZB journals</source><source>AMS Journals (Meteorology)</source><creator>Shu, Yu ; Sun, Jisong ; Chenlu, Jin</creator><creatorcontrib>Shu, Yu ; Sun, Jisong ; Chenlu, Jin</creatorcontrib><description>The mesoscale vortex (MV) is an important rain-producing system. In this study, the reanalysis data and satellite precipitation products are used to classify MVs into three categories: mesoscale convective vortex (MCV), mesoscale stratiform vortex (MSV), and mesoscale dry vortex (MDV). Then, these three categories of midlevel MVs in China from 2007 to 2016 are investigated. A total of 21 053 MVs are obtained. Most MVs form in the northwest of parent convection, and 45% of MVs generate secondary convection. The Tibetan Plateau is the main MV source region. Steered by the westerlies, MVs mainly move eastward. MCV is active in summer, MDV in winter, and MSV in spring and autumn. MCV diurnal variations are closely related to local topography, and MDVs mainly form around midnight. Composite analyses show that MCVs form near the high-value center of convective available potential energy at the development stage of parent convection. The composite MCV forms near the low pressure trough and the thermal ridge at 500 hPa, and a low-level jet exists to the south of the MCV center. At the initiation and maturity stages of MCV, strong convergence and divergence respectively exist at low levels and 400 hPa. The vortex circulation mainly locates near 500 hPa. Above the vortex is a warm core associated with the latent heat release, and below is a cold anomaly related to the cold pool. In the downshear region, there is strong low-level convergence and ascending motion, higher humidity, and greater latent heat release, which favor the formation of secondary convection.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/JAMC-D-21-0095.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Climate ; Climatology ; Convection ; Convective available potential energy ; Convective vortices ; Convergence ; Convergence and divergence ; Diurnal variations ; Heat transfer ; Latent heat ; Latent heat release ; Low pressure ; Low pressure troughs ; Low-level jets ; Mesoscale phenomena ; Mesoscale vortexes ; Potential energy ; Precipitation ; Rain ; Topography ; Vortices ; Westerlies</subject><ispartof>Journal of applied meteorology and climatology, 2022-04, Vol.61 (4), p.309-328</ispartof><rights>Copyright American Meteorological Society Apr 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-1036d96db718f59c3b55ba12952192585f635daa87c8849a4a8ee59e877a2a893</citedby><cites>FETCH-LOGICAL-c313t-1036d96db718f59c3b55ba12952192585f635daa87c8849a4a8ee59e877a2a893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Shu, Yu</creatorcontrib><creatorcontrib>Sun, Jisong</creatorcontrib><creatorcontrib>Chenlu, Jin</creatorcontrib><title>A 10-Year Climatology of Midlevel Mesoscale Vortices in China</title><title>Journal of applied meteorology and climatology</title><description>The mesoscale vortex (MV) is an important rain-producing system. In this study, the reanalysis data and satellite precipitation products are used to classify MVs into three categories: mesoscale convective vortex (MCV), mesoscale stratiform vortex (MSV), and mesoscale dry vortex (MDV). Then, these three categories of midlevel MVs in China from 2007 to 2016 are investigated. A total of 21 053 MVs are obtained. Most MVs form in the northwest of parent convection, and 45% of MVs generate secondary convection. The Tibetan Plateau is the main MV source region. Steered by the westerlies, MVs mainly move eastward. MCV is active in summer, MDV in winter, and MSV in spring and autumn. MCV diurnal variations are closely related to local topography, and MDVs mainly form around midnight. Composite analyses show that MCVs form near the high-value center of convective available potential energy at the development stage of parent convection. The composite MCV forms near the low pressure trough and the thermal ridge at 500 hPa, and a low-level jet exists to the south of the MCV center. At the initiation and maturity stages of MCV, strong convergence and divergence respectively exist at low levels and 400 hPa. The vortex circulation mainly locates near 500 hPa. Above the vortex is a warm core associated with the latent heat release, and below is a cold anomaly related to the cold pool. In the downshear region, there is strong low-level convergence and ascending motion, higher humidity, and greater latent heat release, which favor the formation of secondary convection.</description><subject>Climate</subject><subject>Climatology</subject><subject>Convection</subject><subject>Convective available potential energy</subject><subject>Convective vortices</subject><subject>Convergence</subject><subject>Convergence and divergence</subject><subject>Diurnal variations</subject><subject>Heat transfer</subject><subject>Latent heat</subject><subject>Latent heat release</subject><subject>Low pressure</subject><subject>Low pressure troughs</subject><subject>Low-level jets</subject><subject>Mesoscale phenomena</subject><subject>Mesoscale vortexes</subject><subject>Potential energy</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Topography</subject><subject>Vortices</subject><subject>Westerlies</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEYhIMoWKt3jwHPqXmTvJvk4KFs_aSLFxU8hXQ3q1vWpiZbof_eloqnmcMwwzyEXAKfAGi8fppWJZsxAYxzixM4IiNANMwoKY7_vVCn5CznJedKaY0jcjOlwNl78ImWffflh9jHjy2NLa26pg8_oadVyDHXvg_0Laahq0Om3YqWn93Kn5OT1vc5XPzpmLze3b6UD2z-fP9YTuesliAHBlwWjS2ahQbToq3lAnHhQVgUYAUabAuJjfdG18Yo65U3IaANRmsvvLFyTK4OvesUvzchD24ZN2m1m3Si0MiFQsRdih9SdYo5p9C6ddpdSlsH3O0huT0kN3MC3B6SA_kL26pXkw</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Shu, Yu</creator><creator>Sun, Jisong</creator><creator>Chenlu, Jin</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>202204</creationdate><title>A 10-Year Climatology of Midlevel Mesoscale Vortices in China</title><author>Shu, Yu ; Sun, Jisong ; Chenlu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-1036d96db718f59c3b55ba12952192585f635daa87c8849a4a8ee59e877a2a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Climate</topic><topic>Climatology</topic><topic>Convection</topic><topic>Convective available potential energy</topic><topic>Convective vortices</topic><topic>Convergence</topic><topic>Convergence and divergence</topic><topic>Diurnal variations</topic><topic>Heat transfer</topic><topic>Latent heat</topic><topic>Latent heat release</topic><topic>Low pressure</topic><topic>Low pressure troughs</topic><topic>Low-level jets</topic><topic>Mesoscale phenomena</topic><topic>Mesoscale vortexes</topic><topic>Potential energy</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Topography</topic><topic>Vortices</topic><topic>Westerlies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Yu</creatorcontrib><creatorcontrib>Sun, Jisong</creatorcontrib><creatorcontrib>Chenlu, Jin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Yu</au><au>Sun, Jisong</au><au>Chenlu, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 10-Year Climatology of Midlevel Mesoscale Vortices in China</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2022-04</date><risdate>2022</risdate><volume>61</volume><issue>4</issue><spage>309</spage><epage>328</epage><pages>309-328</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>The mesoscale vortex (MV) is an important rain-producing system. In this study, the reanalysis data and satellite precipitation products are used to classify MVs into three categories: mesoscale convective vortex (MCV), mesoscale stratiform vortex (MSV), and mesoscale dry vortex (MDV). Then, these three categories of midlevel MVs in China from 2007 to 2016 are investigated. A total of 21 053 MVs are obtained. Most MVs form in the northwest of parent convection, and 45% of MVs generate secondary convection. The Tibetan Plateau is the main MV source region. Steered by the westerlies, MVs mainly move eastward. MCV is active in summer, MDV in winter, and MSV in spring and autumn. MCV diurnal variations are closely related to local topography, and MDVs mainly form around midnight. Composite analyses show that MCVs form near the high-value center of convective available potential energy at the development stage of parent convection. The composite MCV forms near the low pressure trough and the thermal ridge at 500 hPa, and a low-level jet exists to the south of the MCV center. At the initiation and maturity stages of MCV, strong convergence and divergence respectively exist at low levels and 400 hPa. The vortex circulation mainly locates near 500 hPa. Above the vortex is a warm core associated with the latent heat release, and below is a cold anomaly related to the cold pool. In the downshear region, there is strong low-level convergence and ascending motion, higher humidity, and greater latent heat release, which favor the formation of secondary convection.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAMC-D-21-0095.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2022-04, Vol.61 (4), p.309-328
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_2675024555
source EZB-FREE-00999 freely available EZB journals; AMS Journals (Meteorology)
subjects Climate
Climatology
Convection
Convective available potential energy
Convective vortices
Convergence
Convergence and divergence
Diurnal variations
Heat transfer
Latent heat
Latent heat release
Low pressure
Low pressure troughs
Low-level jets
Mesoscale phenomena
Mesoscale vortexes
Potential energy
Precipitation
Rain
Topography
Vortices
Westerlies
title A 10-Year Climatology of Midlevel Mesoscale Vortices in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%2010-Year%20Climatology%20of%20Midlevel%20Mesoscale%20Vortices%20in%20China&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Shu,%20Yu&rft.date=2022-04&rft.volume=61&rft.issue=4&rft.spage=309&rft.epage=328&rft.pages=309-328&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/JAMC-D-21-0095.1&rft_dat=%3Cproquest_cross%3E2675024555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675024555&rft_id=info:pmid/&rfr_iscdi=true