A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America
Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute ai...
Gespeichert in:
Veröffentlicht in: | Bulletin of the American Meteorological Society 2021-09, Vol.102 (9), p.E1700-E1713 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | E1713 |
---|---|
container_issue | 9 |
container_start_page | E1700 |
container_title | Bulletin of the American Meteorological Society |
container_volume | 102 |
creator | Vara-Vela, Angel Liduvino Herdies, Dirceu Luís Alvim, Débora Souza Vendrasco, Éder Paulo Figueroa, Silvio Nilo Pendharkar, Jayant Fernandez, Julio Pablo Reyes |
description | Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon. |
doi_str_mv | 10.1175/BAMS-D-21-0018.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674934142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27207535</jstor_id><sourcerecordid>27207535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvXoQFz6mzX9nkGK1RoX5A7XlJNhtMa7p1Nm3Rv96EiqdheL8383iEXDKYMKbVzW32PI-mEWcRAEsm7IiMmOIQgdT6mIwAQPQK6FNyFsJyWEXCRmSR0Re3p2_oqsZ2zc7RHIvW7T2uaO2RZm3x49c09-hCR_MGHZ23fuXotAkbh6HpRb9zSOd-2330uMPGFufkpC4-g7v4m2OyyO_f7x6j2evD0102i6wQqoskB-BpWjIoUqFFmti6TLS0tlJaJzyppIC45rYGqeISdA-UGqpYWCFV4ZwYk-vD3Q36r22f0Cz9Ftf9S8NjLVMhmeQ9BQfKog8BXW022LQFfhsGZijPDOWZqeHMDOUZ1luuDpZl6Dz-81xz0Eoo8Qspc2pM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674934142</pqid></control><display><type>article</type><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</creator><creatorcontrib>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</creatorcontrib><description>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-21-0018.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosol particles ; Aerosols ; Air monitoring ; Air pollution ; Air quality ; Air quality measurements ; Air quality models ; Airborne particulates ; Atmospheric models ; Biomass ; Carbon ; Chemical speciation ; Chemistry ; Darkness ; Deforestation ; Dispersion ; Ecosystems ; Emissions ; Forest & brush fires ; Forest fires ; Forests ; Frameworks ; Gases ; Grasslands ; In situ measurement ; Mathematical models ; Metropolitan areas ; Modelling ; Particulate matter ; Radiation ; Rain ; Regions ; Satellites ; Smoke ; Smoke dispersion ; Time series ; Urban areas ; VOCs ; Volatile organic compounds ; Weather forecasting</subject><ispartof>Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1700-E1713</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</citedby><cites>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Vara-Vela, Angel Liduvino</creatorcontrib><creatorcontrib>Herdies, Dirceu Luís</creatorcontrib><creatorcontrib>Alvim, Débora Souza</creatorcontrib><creatorcontrib>Vendrasco, Éder Paulo</creatorcontrib><creatorcontrib>Figueroa, Silvio Nilo</creatorcontrib><creatorcontrib>Pendharkar, Jayant</creatorcontrib><creatorcontrib>Fernandez, Julio Pablo Reyes</creatorcontrib><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><title>Bulletin of the American Meteorological Society</title><description>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</description><subject>Aerosol particles</subject><subject>Aerosols</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Air quality models</subject><subject>Airborne particulates</subject><subject>Atmospheric models</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Chemical speciation</subject><subject>Chemistry</subject><subject>Darkness</subject><subject>Deforestation</subject><subject>Dispersion</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Forest & brush fires</subject><subject>Forest fires</subject><subject>Forests</subject><subject>Frameworks</subject><subject>Gases</subject><subject>Grasslands</subject><subject>In situ measurement</subject><subject>Mathematical models</subject><subject>Metropolitan areas</subject><subject>Modelling</subject><subject>Particulate matter</subject><subject>Radiation</subject><subject>Rain</subject><subject>Regions</subject><subject>Satellites</subject><subject>Smoke</subject><subject>Smoke dispersion</subject><subject>Time series</subject><subject>Urban areas</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Weather forecasting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvXoQFz6mzX9nkGK1RoX5A7XlJNhtMa7p1Nm3Rv96EiqdheL8383iEXDKYMKbVzW32PI-mEWcRAEsm7IiMmOIQgdT6mIwAQPQK6FNyFsJyWEXCRmSR0Re3p2_oqsZ2zc7RHIvW7T2uaO2RZm3x49c09-hCR_MGHZ23fuXotAkbh6HpRb9zSOd-2330uMPGFufkpC4-g7v4m2OyyO_f7x6j2evD0102i6wQqoskB-BpWjIoUqFFmti6TLS0tlJaJzyppIC45rYGqeISdA-UGqpYWCFV4ZwYk-vD3Q36r22f0Cz9Ftf9S8NjLVMhmeQ9BQfKog8BXW022LQFfhsGZijPDOWZqeHMDOUZ1luuDpZl6Dz-81xz0Eoo8Qspc2pM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Vara-Vela, Angel Liduvino</creator><creator>Herdies, Dirceu Luís</creator><creator>Alvim, Débora Souza</creator><creator>Vendrasco, Éder Paulo</creator><creator>Figueroa, Silvio Nilo</creator><creator>Pendharkar, Jayant</creator><creator>Fernandez, Julio Pablo Reyes</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20210901</creationdate><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><author>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosol particles</topic><topic>Aerosols</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Air quality models</topic><topic>Airborne particulates</topic><topic>Atmospheric models</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Chemical speciation</topic><topic>Chemistry</topic><topic>Darkness</topic><topic>Deforestation</topic><topic>Dispersion</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Forest & brush fires</topic><topic>Forest fires</topic><topic>Forests</topic><topic>Frameworks</topic><topic>Gases</topic><topic>Grasslands</topic><topic>In situ measurement</topic><topic>Mathematical models</topic><topic>Metropolitan areas</topic><topic>Modelling</topic><topic>Particulate matter</topic><topic>Radiation</topic><topic>Rain</topic><topic>Regions</topic><topic>Satellites</topic><topic>Smoke</topic><topic>Smoke dispersion</topic><topic>Time series</topic><topic>Urban areas</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vara-Vela, Angel Liduvino</creatorcontrib><creatorcontrib>Herdies, Dirceu Luís</creatorcontrib><creatorcontrib>Alvim, Débora Souza</creatorcontrib><creatorcontrib>Vendrasco, Éder Paulo</creatorcontrib><creatorcontrib>Figueroa, Silvio Nilo</creatorcontrib><creatorcontrib>Pendharkar, Jayant</creatorcontrib><creatorcontrib>Fernandez, Julio Pablo Reyes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vara-Vela, Angel Liduvino</au><au>Herdies, Dirceu Luís</au><au>Alvim, Débora Souza</au><au>Vendrasco, Éder Paulo</au><au>Figueroa, Silvio Nilo</au><au>Pendharkar, Jayant</au><au>Fernandez, Julio Pablo Reyes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>102</volume><issue>9</issue><spage>E1700</spage><epage>E1713</epage><pages>E1700-E1713</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-21-0018.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0007 |
ispartof | Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1700-E1713 |
issn | 0003-0007 1520-0477 |
language | eng |
recordid | cdi_proquest_journals_2674934142 |
source | American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Aerosol particles Aerosols Air monitoring Air pollution Air quality Air quality measurements Air quality models Airborne particulates Atmospheric models Biomass Carbon Chemical speciation Chemistry Darkness Deforestation Dispersion Ecosystems Emissions Forest & brush fires Forest fires Forests Frameworks Gases Grasslands In situ measurement Mathematical models Metropolitan areas Modelling Particulate matter Radiation Rain Regions Satellites Smoke Smoke dispersion Time series Urban areas VOCs Volatile organic compounds Weather forecasting |
title | A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Predictive%20Framework%20for%20Amazon%20Forest%20Fire%20Smoke%20Dispersion%20over%20South%20America&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Vara-Vela,%20Angel%20Liduvino&rft.date=2021-09-01&rft.volume=102&rft.issue=9&rft.spage=E1700&rft.epage=E1713&rft.pages=E1700-E1713&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-21-0018.1&rft_dat=%3Cjstor_proqu%3E27207535%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674934142&rft_id=info:pmid/&rft_jstor_id=27207535&rfr_iscdi=true |