A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America

Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute ai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2021-09, Vol.102 (9), p.E1700-E1713
Hauptverfasser: Vara-Vela, Angel Liduvino, Herdies, Dirceu Luís, Alvim, Débora Souza, Vendrasco, Éder Paulo, Figueroa, Silvio Nilo, Pendharkar, Jayant, Fernandez, Julio Pablo Reyes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E1713
container_issue 9
container_start_page E1700
container_title Bulletin of the American Meteorological Society
container_volume 102
creator Vara-Vela, Angel Liduvino
Herdies, Dirceu Luís
Alvim, Débora Souza
Vendrasco, Éder Paulo
Figueroa, Silvio Nilo
Pendharkar, Jayant
Fernandez, Julio Pablo Reyes
description Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.
doi_str_mv 10.1175/BAMS-D-21-0018.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674934142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27207535</jstor_id><sourcerecordid>27207535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbvXoQFz6mzX9nkGK1RoX5A7XlJNhtMa7p1Nm3Rv96EiqdheL8383iEXDKYMKbVzW32PI-mEWcRAEsm7IiMmOIQgdT6mIwAQPQK6FNyFsJyWEXCRmSR0Re3p2_oqsZ2zc7RHIvW7T2uaO2RZm3x49c09-hCR_MGHZ23fuXotAkbh6HpRb9zSOd-2330uMPGFufkpC4-g7v4m2OyyO_f7x6j2evD0102i6wQqoskB-BpWjIoUqFFmti6TLS0tlJaJzyppIC45rYGqeISdA-UGqpYWCFV4ZwYk-vD3Q36r22f0Cz9Ftf9S8NjLVMhmeQ9BQfKog8BXW022LQFfhsGZijPDOWZqeHMDOUZ1luuDpZl6Dz-81xz0Eoo8Qspc2pM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674934142</pqid></control><display><type>article</type><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</creator><creatorcontrib>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</creatorcontrib><description>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</description><identifier>ISSN: 0003-0007</identifier><identifier>EISSN: 1520-0477</identifier><identifier>DOI: 10.1175/BAMS-D-21-0018.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosol particles ; Aerosols ; Air monitoring ; Air pollution ; Air quality ; Air quality measurements ; Air quality models ; Airborne particulates ; Atmospheric models ; Biomass ; Carbon ; Chemical speciation ; Chemistry ; Darkness ; Deforestation ; Dispersion ; Ecosystems ; Emissions ; Forest &amp; brush fires ; Forest fires ; Forests ; Frameworks ; Gases ; Grasslands ; In situ measurement ; Mathematical models ; Metropolitan areas ; Modelling ; Particulate matter ; Radiation ; Rain ; Regions ; Satellites ; Smoke ; Smoke dispersion ; Time series ; Urban areas ; VOCs ; Volatile organic compounds ; Weather forecasting</subject><ispartof>Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1700-E1713</ispartof><rights>2021 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</citedby><cites>FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Vara-Vela, Angel Liduvino</creatorcontrib><creatorcontrib>Herdies, Dirceu Luís</creatorcontrib><creatorcontrib>Alvim, Débora Souza</creatorcontrib><creatorcontrib>Vendrasco, Éder Paulo</creatorcontrib><creatorcontrib>Figueroa, Silvio Nilo</creatorcontrib><creatorcontrib>Pendharkar, Jayant</creatorcontrib><creatorcontrib>Fernandez, Julio Pablo Reyes</creatorcontrib><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><title>Bulletin of the American Meteorological Society</title><description>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</description><subject>Aerosol particles</subject><subject>Aerosols</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>Air quality</subject><subject>Air quality measurements</subject><subject>Air quality models</subject><subject>Airborne particulates</subject><subject>Atmospheric models</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Chemical speciation</subject><subject>Chemistry</subject><subject>Darkness</subject><subject>Deforestation</subject><subject>Dispersion</subject><subject>Ecosystems</subject><subject>Emissions</subject><subject>Forest &amp; brush fires</subject><subject>Forest fires</subject><subject>Forests</subject><subject>Frameworks</subject><subject>Gases</subject><subject>Grasslands</subject><subject>In situ measurement</subject><subject>Mathematical models</subject><subject>Metropolitan areas</subject><subject>Modelling</subject><subject>Particulate matter</subject><subject>Radiation</subject><subject>Rain</subject><subject>Regions</subject><subject>Satellites</subject><subject>Smoke</subject><subject>Smoke dispersion</subject><subject>Time series</subject><subject>Urban areas</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Weather forecasting</subject><issn>0003-0007</issn><issn>1520-0477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM1Lw0AQxRdRsFbvXoQFz6mzX9nkGK1RoX5A7XlJNhtMa7p1Nm3Rv96EiqdheL8383iEXDKYMKbVzW32PI-mEWcRAEsm7IiMmOIQgdT6mIwAQPQK6FNyFsJyWEXCRmSR0Re3p2_oqsZ2zc7RHIvW7T2uaO2RZm3x49c09-hCR_MGHZ23fuXotAkbh6HpRb9zSOd-2330uMPGFufkpC4-g7v4m2OyyO_f7x6j2evD0102i6wQqoskB-BpWjIoUqFFmti6TLS0tlJaJzyppIC45rYGqeISdA-UGqpYWCFV4ZwYk-vD3Q36r22f0Cz9Ftf9S8NjLVMhmeQ9BQfKog8BXW022LQFfhsGZijPDOWZqeHMDOUZ1luuDpZl6Dz-81xz0Eoo8Qspc2pM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Vara-Vela, Angel Liduvino</creator><creator>Herdies, Dirceu Luís</creator><creator>Alvim, Débora Souza</creator><creator>Vendrasco, Éder Paulo</creator><creator>Figueroa, Silvio Nilo</creator><creator>Pendharkar, Jayant</creator><creator>Fernandez, Julio Pablo Reyes</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20210901</creationdate><title>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</title><author>Vara-Vela, Angel Liduvino ; Herdies, Dirceu Luís ; Alvim, Débora Souza ; Vendrasco, Éder Paulo ; Figueroa, Silvio Nilo ; Pendharkar, Jayant ; Fernandez, Julio Pablo Reyes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4200299b10a937398cfb874ccd577828d4306f2cf0456b0798cb70d63c345aee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosol particles</topic><topic>Aerosols</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>Air quality</topic><topic>Air quality measurements</topic><topic>Air quality models</topic><topic>Airborne particulates</topic><topic>Atmospheric models</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Chemical speciation</topic><topic>Chemistry</topic><topic>Darkness</topic><topic>Deforestation</topic><topic>Dispersion</topic><topic>Ecosystems</topic><topic>Emissions</topic><topic>Forest &amp; brush fires</topic><topic>Forest fires</topic><topic>Forests</topic><topic>Frameworks</topic><topic>Gases</topic><topic>Grasslands</topic><topic>In situ measurement</topic><topic>Mathematical models</topic><topic>Metropolitan areas</topic><topic>Modelling</topic><topic>Particulate matter</topic><topic>Radiation</topic><topic>Rain</topic><topic>Regions</topic><topic>Satellites</topic><topic>Smoke</topic><topic>Smoke dispersion</topic><topic>Time series</topic><topic>Urban areas</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vara-Vela, Angel Liduvino</creatorcontrib><creatorcontrib>Herdies, Dirceu Luís</creatorcontrib><creatorcontrib>Alvim, Débora Souza</creatorcontrib><creatorcontrib>Vendrasco, Éder Paulo</creatorcontrib><creatorcontrib>Figueroa, Silvio Nilo</creatorcontrib><creatorcontrib>Pendharkar, Jayant</creatorcontrib><creatorcontrib>Fernandez, Julio Pablo Reyes</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Bulletin of the American Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vara-Vela, Angel Liduvino</au><au>Herdies, Dirceu Luís</au><au>Alvim, Débora Souza</au><au>Vendrasco, Éder Paulo</au><au>Figueroa, Silvio Nilo</au><au>Pendharkar, Jayant</au><au>Fernandez, Julio Pablo Reyes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America</atitle><jtitle>Bulletin of the American Meteorological Society</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>102</volume><issue>9</issue><spage>E1700</spage><epage>E1713</epage><pages>E1700-E1713</pages><issn>0003-0007</issn><eissn>1520-0477</eissn><abstract>Aerosol particles from forest fire events in the Amazon can be effectively transported to urban areas in southeastern South America, thus affecting the air quality over those regions. A combination of observational data and a comprehensive air quality modeling system capable of anticipating acute air pollution episodes is therefore required. A new predictive framework for Amazon forest fire smoke dispersion over South America has been developed based on the Weather Research and Forecasting with Chemistry community (WRF-Chem) model. Two experiments of 48-h simulations over South America were performed by using this system at 20-km horizontal resolution, on a daily basis, during August and September of 2018 and 2019. The experiment in 2019 included the very strong 3-week forest fire event, when the São Paulo metropolitan area, located in southeastern South America, was plunged into darkness on August 19. The model results were satisfactorily compared against satellite-based data products and in situ measurements collected from air quality monitoring sites. The system is executed daily immediately after the CPTEC Satellite Division releases the latest active fire locations data and provides 48-h forecasts of regional distributions of chemical species such as CO, PM2.5, and O3. The new modeling system will be used as a benchmark within the framework of the Chemistry of the Atmosphere–Field Experiment in Brazil (CAFE-Brazil) project, which will take place in 2022 over the Amazon.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/BAMS-D-21-0018.1</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0007
ispartof Bulletin of the American Meteorological Society, 2021-09, Vol.102 (9), p.E1700-E1713
issn 0003-0007
1520-0477
language eng
recordid cdi_proquest_journals_2674934142
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aerosol particles
Aerosols
Air monitoring
Air pollution
Air quality
Air quality measurements
Air quality models
Airborne particulates
Atmospheric models
Biomass
Carbon
Chemical speciation
Chemistry
Darkness
Deforestation
Dispersion
Ecosystems
Emissions
Forest & brush fires
Forest fires
Forests
Frameworks
Gases
Grasslands
In situ measurement
Mathematical models
Metropolitan areas
Modelling
Particulate matter
Radiation
Rain
Regions
Satellites
Smoke
Smoke dispersion
Time series
Urban areas
VOCs
Volatile organic compounds
Weather forecasting
title A New Predictive Framework for Amazon Forest Fire Smoke Dispersion over South America
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Predictive%20Framework%20for%20Amazon%20Forest%20Fire%20Smoke%20Dispersion%20over%20South%20America&rft.jtitle=Bulletin%20of%20the%20American%20Meteorological%20Society&rft.au=Vara-Vela,%20Angel%20Liduvino&rft.date=2021-09-01&rft.volume=102&rft.issue=9&rft.spage=E1700&rft.epage=E1713&rft.pages=E1700-E1713&rft.issn=0003-0007&rft.eissn=1520-0477&rft_id=info:doi/10.1175/BAMS-D-21-0018.1&rft_dat=%3Cjstor_proqu%3E27207535%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674934142&rft_id=info:pmid/&rft_jstor_id=27207535&rfr_iscdi=true