An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns

A Kirkman triple system of order v, KTS(v), is a resolvable Steiner triple system on v elements. In this paper, we investigate an open problem posed by Doug Stinson, namely the existence of KTS(v) which contain as a subdesign a Steiner triple system of order u, an STS(u). We present several differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial designs 2022-08, Vol.30 (8), p.581-608
Hauptverfasser: Dukes, Peter J., Lamken, Esther R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 8
container_start_page 581
container_title Journal of combinatorial designs
container_volume 30
creator Dukes, Peter J.
Lamken, Esther R.
description A Kirkman triple system of order v, KTS(v), is a resolvable Steiner triple system on v elements. In this paper, we investigate an open problem posed by Doug Stinson, namely the existence of KTS(v) which contain as a subdesign a Steiner triple system of order u, an STS(u). We present several different constructions for designs of this form. As a consequence, we completely settle the extremal case v= 2u+ 1, for which a list of possible exceptions had remained for close to 30 years. Our new constructions also provide the first infinite classes for the more general problem. We reduce the other maximal case v= 2u+ 3 to (at present) three possible exceptions. In addition, we obtain results for other cases of the form v= 2u+w and also near v= 3u. Our primary method introduces a new type of Kirkman frame which contains group divisible design subsystems. These subsystems can occur with different configurations, and we use two different varieties in our constructions.
doi_str_mv 10.1002/jcd.21844
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674670918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674670918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1024-ef1a212f93013a921c1d88ffe33d6e1c151c25f32d625884962b485bfcbb57313</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9dmxa49V-U8lFlixnMSmLm0S7ESl3x5DmJCY7t29391JD6FzIBMghE7XZTWhIPP8AI2AU5IJAeQwaSJYJjlTx-gkxjUhRCkmRuh1XuO-rUxncVPjbmWx_fSxs3WZBg4_-vC-NckIvt1YHPfJ2ka8890KJ-lrG_56JuLYF5WN_q2Op-jImU20Z791jF5urp8Xd9ny6fZ-MV9mJRCaZ9aBoUCdYgSYURRKqKR0zjJWCZs6DiXljtFKUC5lrgQtcskLVxYFnzFgY3Qx3G1D89Hb2Ol104c6vdRUzHIxIwpkoi4HqgxNjME63Qa_NWGvgejv-HSKT__El9jpwO78xu7_B_XD4mrY-AJlI3FI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674670918</pqid></control><display><type>article</type><title>An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dukes, Peter J. ; Lamken, Esther R.</creator><creatorcontrib>Dukes, Peter J. ; Lamken, Esther R.</creatorcontrib><description>A Kirkman triple system of order v, KTS(v), is a resolvable Steiner triple system on v elements. In this paper, we investigate an open problem posed by Doug Stinson, namely the existence of KTS(v) which contain as a subdesign a Steiner triple system of order u, an STS(u). We present several different constructions for designs of this form. As a consequence, we completely settle the extremal case v= 2u+ 1, for which a list of possible exceptions had remained for close to 30 years. Our new constructions also provide the first infinite classes for the more general problem. We reduce the other maximal case v= 2u+ 3 to (at present) three possible exceptions. In addition, we obtain results for other cases of the form v= 2u+w and also near v= 3u. Our primary method introduces a new type of Kirkman frame which contains group divisible design subsystems. These subsystems can occur with different configurations, and we use two different varieties in our constructions.</description><identifier>ISSN: 1063-8539</identifier><identifier>EISSN: 1520-6610</identifier><identifier>DOI: 10.1002/jcd.21844</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>group divisible design ; Howell design ; Kirkman triple system ; subdesign ; Subsystems</subject><ispartof>Journal of combinatorial designs, 2022-08, Vol.30 (8), p.581-608</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1024-ef1a212f93013a921c1d88ffe33d6e1c151c25f32d625884962b485bfcbb57313</cites><orcidid>0000-0002-5617-083X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcd.21844$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcd.21844$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><title>An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns</title><title>Journal of combinatorial designs</title><description>A Kirkman triple system of order v, KTS(v), is a resolvable Steiner triple system on v elements. In this paper, we investigate an open problem posed by Doug Stinson, namely the existence of KTS(v) which contain as a subdesign a Steiner triple system of order u, an STS(u). We present several different constructions for designs of this form. As a consequence, we completely settle the extremal case v= 2u+ 1, for which a list of possible exceptions had remained for close to 30 years. Our new constructions also provide the first infinite classes for the more general problem. We reduce the other maximal case v= 2u+ 3 to (at present) three possible exceptions. In addition, we obtain results for other cases of the form v= 2u+w and also near v= 3u. Our primary method introduces a new type of Kirkman frame which contains group divisible design subsystems. These subsystems can occur with different configurations, and we use two different varieties in our constructions.</description><subject>group divisible design</subject><subject>Howell design</subject><subject>Kirkman triple system</subject><subject>subdesign</subject><subject>Subsystems</subject><issn>1063-8539</issn><issn>1520-6610</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9dmxa49V-U8lFlixnMSmLm0S7ESl3x5DmJCY7t29391JD6FzIBMghE7XZTWhIPP8AI2AU5IJAeQwaSJYJjlTx-gkxjUhRCkmRuh1XuO-rUxncVPjbmWx_fSxs3WZBg4_-vC-NckIvt1YHPfJ2ka8890KJ-lrG_56JuLYF5WN_q2Op-jImU20Z791jF5urp8Xd9ny6fZ-MV9mJRCaZ9aBoUCdYgSYURRKqKR0zjJWCZs6DiXljtFKUC5lrgQtcskLVxYFnzFgY3Qx3G1D89Hb2Ol104c6vdRUzHIxIwpkoi4HqgxNjME63Qa_NWGvgejv-HSKT__El9jpwO78xu7_B_XD4mrY-AJlI3FI</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Dukes, Peter J.</creator><creator>Lamken, Esther R.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5617-083X</orcidid></search><sort><creationdate>202208</creationdate><title>An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns</title><author>Dukes, Peter J. ; Lamken, Esther R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1024-ef1a212f93013a921c1d88ffe33d6e1c151c25f32d625884962b485bfcbb57313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>group divisible design</topic><topic>Howell design</topic><topic>Kirkman triple system</topic><topic>subdesign</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial designs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dukes, Peter J.</au><au>Lamken, Esther R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns</atitle><jtitle>Journal of combinatorial designs</jtitle><date>2022-08</date><risdate>2022</risdate><volume>30</volume><issue>8</issue><spage>581</spage><epage>608</epage><pages>581-608</pages><issn>1063-8539</issn><eissn>1520-6610</eissn><abstract>A Kirkman triple system of order v, KTS(v), is a resolvable Steiner triple system on v elements. In this paper, we investigate an open problem posed by Doug Stinson, namely the existence of KTS(v) which contain as a subdesign a Steiner triple system of order u, an STS(u). We present several different constructions for designs of this form. As a consequence, we completely settle the extremal case v= 2u+ 1, for which a list of possible exceptions had remained for close to 30 years. Our new constructions also provide the first infinite classes for the more general problem. We reduce the other maximal case v= 2u+ 3 to (at present) three possible exceptions. In addition, we obtain results for other cases of the form v= 2u+w and also near v= 3u. Our primary method introduces a new type of Kirkman frame which contains group divisible design subsystems. These subsystems can occur with different configurations, and we use two different varieties in our constructions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jcd.21844</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-5617-083X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1063-8539
ispartof Journal of combinatorial designs, 2022-08, Vol.30 (8), p.581-608
issn 1063-8539
1520-6610
language eng
recordid cdi_proquest_journals_2674670918
source Wiley Online Library Journals Frontfile Complete
subjects group divisible design
Howell design
Kirkman triple system
subdesign
Subsystems
title An update on the existence of Kirkman triple systems with steiner triple systems as subdesigns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20update%20on%20the%20existence%20of%20Kirkman%20triple%20systems%20with%20steiner%20triple%20systems%20as%20subdesigns&rft.jtitle=Journal%20of%20combinatorial%20designs&rft.au=Dukes,%20Peter%20J.&rft.date=2022-08&rft.volume=30&rft.issue=8&rft.spage=581&rft.epage=608&rft.pages=581-608&rft.issn=1063-8539&rft.eissn=1520-6610&rft_id=info:doi/10.1002/jcd.21844&rft_dat=%3Cproquest_cross%3E2674670918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674670918&rft_id=info:pmid/&rfr_iscdi=true