Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes

The high capacity of silicon (Si) for lithium incorporation makes it a promising anode material for lithium-ion batteries; however, pulverization of Si due to huge volume changes during lithiation/delithiation leads to significant capacity loss during cycling. To address challenges in low cyclabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-07, Vol.909, p.164734, Article 164734
Hauptverfasser: Hamedani, Ali Ansari, Ow-Yang, Cleva W., Hayat Soytas, Serap
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 164734
container_title Journal of alloys and compounds
container_volume 909
creator Hamedani, Ali Ansari
Ow-Yang, Cleva W.
Hayat Soytas, Serap
description The high capacity of silicon (Si) for lithium incorporation makes it a promising anode material for lithium-ion batteries; however, pulverization of Si due to huge volume changes during lithiation/delithiation leads to significant capacity loss during cycling. To address challenges in low cyclability, nanostructured Si in carbon nanocomposites offers an attractive solution. In this study, we report an efficient method for the synthesis of a nanocomposite containing Si nanoparticles homogeneously embedded in an electrically conductive carbon nanofiber (CNF) network. Electrospinning of polyacrylonitrile (PAN) solution containing hydrolyzed tetraethyoxysilane (TEOS), as a Si precursor, and subsequent carbonization of hybrid nanofibers yielded a composite of SiO2 ultrafine nano-domains in the carbon network (C-SiO2). Low temperature molten salt-assisted aluminothermic reduction of C-SiO2 nanofibers allowed us to produce a C-Si/SiOx nanocomposite without forming detrimental SiC, which is thermodynamically favorable at high temperatures in a system with a high interfacial surface area between the carbon and SiO2 phases. The nanocomposite C-Si/SiOx anodes showed a reversible capacity of 860 mAh g−1 at a current rate of 200 mA g−1, retaining a capacity of 680 mAh g−1 after 100 cycles. In addition, the nanocomposite anodes delivered a reversible capacity of 569 mAh g−1 at a current rate of 400 mA g−1 while maintaining 95% of maximum capacity after subsequent 100 cycles. This study demonstrates the capability of designing nanocomposite anodes from reaction precursors combined with low-temperature aluminothermic reduction to produce a capacity-retaining anode composite of Si nanocrystals uniformly dispersed in the carbon matrix. [Display omitted] •Electrospinning of a hybrid solution yielded SiOx domains homogeneously distributed throughout the nanofibers.•SiO2 was reduced to Si by a low-temperature aluminothermic reduction with Al/AlCl3.•The nanocomposite electrodes of C-Si/SiOx showed excellent capacity retention and stability.
doi_str_mv 10.1016/j.jallcom.2022.164734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674431683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838822011252</els_id><sourcerecordid>2674431683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-557ee22dab81c802e1f2b9c82a232e80fa9467c1ac71b927853921a5ee40108b3</originalsourceid><addsrcrecordid>eNqFkL1O7DAQhS0EEsvPIyBZunUW_-THqRBCXEBCogBqy3YmrKMkzh1nkdLdN6DgDXkSjHZ7qilmzjlzPkIuOFtzxsvLbt2ZvndhWAsmxJqXeSXzA7LiqpJZXpb1IVmxWhSZkkodk5MYO8YYryVfkY9n33sXRjqaMThc4mz6mMFgoWmgoc6g3S9bbwEjbTEMdLNY9A2dQr-YJOrD6Gf0PdCv_5_05fbpmU4IbosxIDWRbvzbJpsA24CDGR3Q3s8bvx0yn7ytmWfAhaaIBuIZOWrTB3C-n6fk9e_ty8199vh093Bz_Zg5Kas5K4oKQIjGWMWdYgJ4K2ztlDBCClCsNXVeVo4bV3Fbi0oVshbcFAA540xZeUr-7HwnDP-2EGfdhS2OKVKLsspzyUsl01Wxu3IYYkRo9YR-MLhozvQPe93pPXv9w17v2Cfd1U4HqcK7B9TReUjNG5-4zLoJ_heHb3W-k84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674431683</pqid></control><display><type>article</type><title>Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes</title><source>Elsevier ScienceDirect Journals</source><creator>Hamedani, Ali Ansari ; Ow-Yang, Cleva W. ; Hayat Soytas, Serap</creator><creatorcontrib>Hamedani, Ali Ansari ; Ow-Yang, Cleva W. ; Hayat Soytas, Serap</creatorcontrib><description>The high capacity of silicon (Si) for lithium incorporation makes it a promising anode material for lithium-ion batteries; however, pulverization of Si due to huge volume changes during lithiation/delithiation leads to significant capacity loss during cycling. To address challenges in low cyclability, nanostructured Si in carbon nanocomposites offers an attractive solution. In this study, we report an efficient method for the synthesis of a nanocomposite containing Si nanoparticles homogeneously embedded in an electrically conductive carbon nanofiber (CNF) network. Electrospinning of polyacrylonitrile (PAN) solution containing hydrolyzed tetraethyoxysilane (TEOS), as a Si precursor, and subsequent carbonization of hybrid nanofibers yielded a composite of SiO2 ultrafine nano-domains in the carbon network (C-SiO2). Low temperature molten salt-assisted aluminothermic reduction of C-SiO2 nanofibers allowed us to produce a C-Si/SiOx nanocomposite without forming detrimental SiC, which is thermodynamically favorable at high temperatures in a system with a high interfacial surface area between the carbon and SiO2 phases. The nanocomposite C-Si/SiOx anodes showed a reversible capacity of 860 mAh g−1 at a current rate of 200 mA g−1, retaining a capacity of 680 mAh g−1 after 100 cycles. In addition, the nanocomposite anodes delivered a reversible capacity of 569 mAh g−1 at a current rate of 400 mA g−1 while maintaining 95% of maximum capacity after subsequent 100 cycles. This study demonstrates the capability of designing nanocomposite anodes from reaction precursors combined with low-temperature aluminothermic reduction to produce a capacity-retaining anode composite of Si nanocrystals uniformly dispersed in the carbon matrix. [Display omitted] •Electrospinning of a hybrid solution yielded SiOx domains homogeneously distributed throughout the nanofibers.•SiO2 was reduced to Si by a low-temperature aluminothermic reduction with Al/AlCl3.•The nanocomposite electrodes of C-Si/SiOx showed excellent capacity retention and stability.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2022.164734</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminothermic reduction ; Anode ; Anodes ; Carbon ; Carbon fibers ; Electrode materials ; Electrospinning ; High temperature ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Low temperature ; Metallothermic reduction ; Molten salts ; Nanocomposites ; Nanocrystals ; Nanofiber ; Nanofibers ; Nanoparticles ; Polyacrylonitrile ; Precursors ; Rechargeable batteries ; Silicon dioxide ; Silicon nanoparticle ; Ultrafines</subject><ispartof>Journal of alloys and compounds, 2022-07, Vol.909, p.164734, Article 164734</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-557ee22dab81c802e1f2b9c82a232e80fa9467c1ac71b927853921a5ee40108b3</citedby><cites>FETCH-LOGICAL-c337t-557ee22dab81c802e1f2b9c82a232e80fa9467c1ac71b927853921a5ee40108b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838822011252$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hamedani, Ali Ansari</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W.</creatorcontrib><creatorcontrib>Hayat Soytas, Serap</creatorcontrib><title>Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes</title><title>Journal of alloys and compounds</title><description>The high capacity of silicon (Si) for lithium incorporation makes it a promising anode material for lithium-ion batteries; however, pulverization of Si due to huge volume changes during lithiation/delithiation leads to significant capacity loss during cycling. To address challenges in low cyclability, nanostructured Si in carbon nanocomposites offers an attractive solution. In this study, we report an efficient method for the synthesis of a nanocomposite containing Si nanoparticles homogeneously embedded in an electrically conductive carbon nanofiber (CNF) network. Electrospinning of polyacrylonitrile (PAN) solution containing hydrolyzed tetraethyoxysilane (TEOS), as a Si precursor, and subsequent carbonization of hybrid nanofibers yielded a composite of SiO2 ultrafine nano-domains in the carbon network (C-SiO2). Low temperature molten salt-assisted aluminothermic reduction of C-SiO2 nanofibers allowed us to produce a C-Si/SiOx nanocomposite without forming detrimental SiC, which is thermodynamically favorable at high temperatures in a system with a high interfacial surface area between the carbon and SiO2 phases. The nanocomposite C-Si/SiOx anodes showed a reversible capacity of 860 mAh g−1 at a current rate of 200 mA g−1, retaining a capacity of 680 mAh g−1 after 100 cycles. In addition, the nanocomposite anodes delivered a reversible capacity of 569 mAh g−1 at a current rate of 400 mA g−1 while maintaining 95% of maximum capacity after subsequent 100 cycles. This study demonstrates the capability of designing nanocomposite anodes from reaction precursors combined with low-temperature aluminothermic reduction to produce a capacity-retaining anode composite of Si nanocrystals uniformly dispersed in the carbon matrix. [Display omitted] •Electrospinning of a hybrid solution yielded SiOx domains homogeneously distributed throughout the nanofibers.•SiO2 was reduced to Si by a low-temperature aluminothermic reduction with Al/AlCl3.•The nanocomposite electrodes of C-Si/SiOx showed excellent capacity retention and stability.</description><subject>Aluminothermic reduction</subject><subject>Anode</subject><subject>Anodes</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>Electrode materials</subject><subject>Electrospinning</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Low temperature</subject><subject>Metallothermic reduction</subject><subject>Molten salts</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Nanofiber</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Polyacrylonitrile</subject><subject>Precursors</subject><subject>Rechargeable batteries</subject><subject>Silicon dioxide</subject><subject>Silicon nanoparticle</subject><subject>Ultrafines</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1O7DAQhS0EEsvPIyBZunUW_-THqRBCXEBCogBqy3YmrKMkzh1nkdLdN6DgDXkSjHZ7qilmzjlzPkIuOFtzxsvLbt2ZvndhWAsmxJqXeSXzA7LiqpJZXpb1IVmxWhSZkkodk5MYO8YYryVfkY9n33sXRjqaMThc4mz6mMFgoWmgoc6g3S9bbwEjbTEMdLNY9A2dQr-YJOrD6Gf0PdCv_5_05fbpmU4IbosxIDWRbvzbJpsA24CDGR3Q3s8bvx0yn7ytmWfAhaaIBuIZOWrTB3C-n6fk9e_ty8199vh093Bz_Zg5Kas5K4oKQIjGWMWdYgJ4K2ztlDBCClCsNXVeVo4bV3Fbi0oVshbcFAA540xZeUr-7HwnDP-2EGfdhS2OKVKLsspzyUsl01Wxu3IYYkRo9YR-MLhozvQPe93pPXv9w17v2Cfd1U4HqcK7B9TReUjNG5-4zLoJ_heHb3W-k84</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Hamedani, Ali Ansari</creator><creator>Ow-Yang, Cleva W.</creator><creator>Hayat Soytas, Serap</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220715</creationdate><title>Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes</title><author>Hamedani, Ali Ansari ; Ow-Yang, Cleva W. ; Hayat Soytas, Serap</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-557ee22dab81c802e1f2b9c82a232e80fa9467c1ac71b927853921a5ee40108b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminothermic reduction</topic><topic>Anode</topic><topic>Anodes</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>Electrode materials</topic><topic>Electrospinning</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Low temperature</topic><topic>Metallothermic reduction</topic><topic>Molten salts</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Nanofiber</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Polyacrylonitrile</topic><topic>Precursors</topic><topic>Rechargeable batteries</topic><topic>Silicon dioxide</topic><topic>Silicon nanoparticle</topic><topic>Ultrafines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamedani, Ali Ansari</creatorcontrib><creatorcontrib>Ow-Yang, Cleva W.</creatorcontrib><creatorcontrib>Hayat Soytas, Serap</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamedani, Ali Ansari</au><au>Ow-Yang, Cleva W.</au><au>Hayat Soytas, Serap</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>909</volume><spage>164734</spage><pages>164734-</pages><artnum>164734</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The high capacity of silicon (Si) for lithium incorporation makes it a promising anode material for lithium-ion batteries; however, pulverization of Si due to huge volume changes during lithiation/delithiation leads to significant capacity loss during cycling. To address challenges in low cyclability, nanostructured Si in carbon nanocomposites offers an attractive solution. In this study, we report an efficient method for the synthesis of a nanocomposite containing Si nanoparticles homogeneously embedded in an electrically conductive carbon nanofiber (CNF) network. Electrospinning of polyacrylonitrile (PAN) solution containing hydrolyzed tetraethyoxysilane (TEOS), as a Si precursor, and subsequent carbonization of hybrid nanofibers yielded a composite of SiO2 ultrafine nano-domains in the carbon network (C-SiO2). Low temperature molten salt-assisted aluminothermic reduction of C-SiO2 nanofibers allowed us to produce a C-Si/SiOx nanocomposite without forming detrimental SiC, which is thermodynamically favorable at high temperatures in a system with a high interfacial surface area between the carbon and SiO2 phases. The nanocomposite C-Si/SiOx anodes showed a reversible capacity of 860 mAh g−1 at a current rate of 200 mA g−1, retaining a capacity of 680 mAh g−1 after 100 cycles. In addition, the nanocomposite anodes delivered a reversible capacity of 569 mAh g−1 at a current rate of 400 mA g−1 while maintaining 95% of maximum capacity after subsequent 100 cycles. This study demonstrates the capability of designing nanocomposite anodes from reaction precursors combined with low-temperature aluminothermic reduction to produce a capacity-retaining anode composite of Si nanocrystals uniformly dispersed in the carbon matrix. [Display omitted] •Electrospinning of a hybrid solution yielded SiOx domains homogeneously distributed throughout the nanofibers.•SiO2 was reduced to Si by a low-temperature aluminothermic reduction with Al/AlCl3.•The nanocomposite electrodes of C-Si/SiOx showed excellent capacity retention and stability.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2022.164734</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-07, Vol.909, p.164734, Article 164734
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2674431683
source Elsevier ScienceDirect Journals
subjects Aluminothermic reduction
Anode
Anodes
Carbon
Carbon fibers
Electrode materials
Electrospinning
High temperature
Lithium
Lithium-ion batteries
Lithium-ion battery
Low temperature
Metallothermic reduction
Molten salts
Nanocomposites
Nanocrystals
Nanofiber
Nanofibers
Nanoparticles
Polyacrylonitrile
Precursors
Rechargeable batteries
Silicon dioxide
Silicon nanoparticle
Ultrafines
title Silicon nanocrystals-embedded carbon nanofibers from hybrid polyacrylonitrile – TEOS precursor as high-performance lithium-ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T10%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20nanocrystals-embedded%20carbon%20nanofibers%20from%20hybrid%20polyacrylonitrile%20%E2%80%93%20TEOS%20precursor%20as%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Hamedani,%20Ali%20Ansari&rft.date=2022-07-15&rft.volume=909&rft.spage=164734&rft.pages=164734-&rft.artnum=164734&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2022.164734&rft_dat=%3Cproquest_cross%3E2674431683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674431683&rft_id=info:pmid/&rft_els_id=S0925838822011252&rfr_iscdi=true