Recent progress in yellow laser: Principles, status and perspectives
•Different nonlinear lasers and different resonator structures for yellow laser.•Stimulated Raman scattering laser for obtaining yellow light output.•Output characteristics including nonlinear frequency conversion, conversion efficiency and output power for yellow laser. Yellow lasers have always at...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2022-08, Vol.152, p.108113, Article 108113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108113 |
container_title | Optics and laser technology |
container_volume | 152 |
creator | Cai, Yunpeng Ding, Jie Bai, Zhenxu Qi, Yaoyao Wang, Yulei Lu, Zhiwei |
description | •Different nonlinear lasers and different resonator structures for yellow laser.•Stimulated Raman scattering laser for obtaining yellow light output.•Output characteristics including nonlinear frequency conversion, conversion efficiency and output power for yellow laser.
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano-guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field. |
doi_str_mv | 10.1016/j.optlastec.2022.108113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674422640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399222002705</els_id><sourcerecordid>2674422640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6f0b8cfdca570337d0231cb9133b706cbe61e5cbbbf6469620a2a2527659f253</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouF5-gwFf7TpJmnTr27JeYUGRfQ9pOpWU2tYku7L_3iwVX30aGM45M-cj5IrBnAFTt-18GGNnQkQ758B52i4YE0dkxhZFmXGZy2MyAxCQibLkp-QshBYAciXFjNy_o8U-0tEPHx5DoK6ne-y64ZumTPR39M273rqxw3BDQzRxG6jpazqiDyPa6HYYLshJY7qAl7_znGweHzar52z9-vSyWq4zK3IRM9VAtbBNbY0sQIiiBi6YrUomRFWAshUqhtJWVdWoXJWKg-GGS14oWTZcinNyPcWmZ7-2GKJuh63v00XNVZHnnKsckqqYVNYPIXhs9Ojdp_F7zUAfiOlW_xHTB2J6Ipacy8mJqcPOodfBOuwt1s6nproe3L8ZP0gpeJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674422640</pqid></control><display><type>article</type><title>Recent progress in yellow laser: Principles, status and perspectives</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Yunpeng ; Ding, Jie ; Bai, Zhenxu ; Qi, Yaoyao ; Wang, Yulei ; Lu, Zhiwei</creator><creatorcontrib>Cai, Yunpeng ; Ding, Jie ; Bai, Zhenxu ; Qi, Yaoyao ; Wang, Yulei ; Lu, Zhiwei</creatorcontrib><description>•Different nonlinear lasers and different resonator structures for yellow laser.•Stimulated Raman scattering laser for obtaining yellow light output.•Output characteristics including nonlinear frequency conversion, conversion efficiency and output power for yellow laser.
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano-guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/j.optlastec.2022.108113</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Adaptive optics ; Conversion efficiency ; Excitation ; Non-linear frequency conversion ; Raman spectra ; Second harmonic generation ; SRS ; Wavelength scalability ; Yellow laser</subject><ispartof>Optics and laser technology, 2022-08, Vol.152, p.108113, Article 108113</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6f0b8cfdca570337d0231cb9133b706cbe61e5cbbbf6469620a2a2527659f253</citedby><cites>FETCH-LOGICAL-c343t-6f0b8cfdca570337d0231cb9133b706cbe61e5cbbbf6469620a2a2527659f253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optlastec.2022.108113$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Bai, Zhenxu</creatorcontrib><creatorcontrib>Qi, Yaoyao</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><creatorcontrib>Lu, Zhiwei</creatorcontrib><title>Recent progress in yellow laser: Principles, status and perspectives</title><title>Optics and laser technology</title><description>•Different nonlinear lasers and different resonator structures for yellow laser.•Stimulated Raman scattering laser for obtaining yellow light output.•Output characteristics including nonlinear frequency conversion, conversion efficiency and output power for yellow laser.
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano-guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.</description><subject>Adaptive optics</subject><subject>Conversion efficiency</subject><subject>Excitation</subject><subject>Non-linear frequency conversion</subject><subject>Raman spectra</subject><subject>Second harmonic generation</subject><subject>SRS</subject><subject>Wavelength scalability</subject><subject>Yellow laser</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouF5-gwFf7TpJmnTr27JeYUGRfQ9pOpWU2tYku7L_3iwVX30aGM45M-cj5IrBnAFTt-18GGNnQkQ758B52i4YE0dkxhZFmXGZy2MyAxCQibLkp-QshBYAciXFjNy_o8U-0tEPHx5DoK6ne-y64ZumTPR39M273rqxw3BDQzRxG6jpazqiDyPa6HYYLshJY7qAl7_znGweHzar52z9-vSyWq4zK3IRM9VAtbBNbY0sQIiiBi6YrUomRFWAshUqhtJWVdWoXJWKg-GGS14oWTZcinNyPcWmZ7-2GKJuh63v00XNVZHnnKsckqqYVNYPIXhs9Ojdp_F7zUAfiOlW_xHTB2J6Ipacy8mJqcPOodfBOuwt1s6nproe3L8ZP0gpeJI</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Cai, Yunpeng</creator><creator>Ding, Jie</creator><creator>Bai, Zhenxu</creator><creator>Qi, Yaoyao</creator><creator>Wang, Yulei</creator><creator>Lu, Zhiwei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202208</creationdate><title>Recent progress in yellow laser: Principles, status and perspectives</title><author>Cai, Yunpeng ; Ding, Jie ; Bai, Zhenxu ; Qi, Yaoyao ; Wang, Yulei ; Lu, Zhiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6f0b8cfdca570337d0231cb9133b706cbe61e5cbbbf6469620a2a2527659f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive optics</topic><topic>Conversion efficiency</topic><topic>Excitation</topic><topic>Non-linear frequency conversion</topic><topic>Raman spectra</topic><topic>Second harmonic generation</topic><topic>SRS</topic><topic>Wavelength scalability</topic><topic>Yellow laser</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Yunpeng</creatorcontrib><creatorcontrib>Ding, Jie</creatorcontrib><creatorcontrib>Bai, Zhenxu</creatorcontrib><creatorcontrib>Qi, Yaoyao</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><creatorcontrib>Lu, Zhiwei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Yunpeng</au><au>Ding, Jie</au><au>Bai, Zhenxu</au><au>Qi, Yaoyao</au><au>Wang, Yulei</au><au>Lu, Zhiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent progress in yellow laser: Principles, status and perspectives</atitle><jtitle>Optics and laser technology</jtitle><date>2022-08</date><risdate>2022</risdate><volume>152</volume><spage>108113</spage><pages>108113-</pages><artnum>108113</artnum><issn>0030-3992</issn><eissn>1879-2545</eissn><abstract>•Different nonlinear lasers and different resonator structures for yellow laser.•Stimulated Raman scattering laser for obtaining yellow light output.•Output characteristics including nonlinear frequency conversion, conversion efficiency and output power for yellow laser.
Yellow lasers have always attracted much attention in the fields of biomedicine, lidar, adaptive optics and nano-guide stars. Different application scenarios also have differences in the selection of yellow light wavelengths and various indicators. For example, the Coarse Star and Nano-guide technologies require a narrow yellow light linewidth of 589 nm. According to the generation method, it can be divided into dye excitation, semiconductor excitation and nonlinear frequency conversion excitation. Non-linear frequency conversion technology can be divided into sum frequency generation (SFG), second harmonic generation (SHG), optical parametric oscillation (OPO) and stimulated Raman scattering (SRS). Among them, SRS has become a current research hotspot due to its high beam quality, high wavelength scalability and high conversion efficiency. The development and research status of non-linear frequency conversion technology are expatiated in this article, which is useful reference for the future in this field.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.optlastec.2022.108113</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2022-08, Vol.152, p.108113, Article 108113 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_journals_2674422640 |
source | Elsevier ScienceDirect Journals |
subjects | Adaptive optics Conversion efficiency Excitation Non-linear frequency conversion Raman spectra Second harmonic generation SRS Wavelength scalability Yellow laser |
title | Recent progress in yellow laser: Principles, status and perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20progress%20in%20yellow%20laser:%20Principles,%20status%20and%20perspectives&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Cai,%20Yunpeng&rft.date=2022-08&rft.volume=152&rft.spage=108113&rft.pages=108113-&rft.artnum=108113&rft.issn=0030-3992&rft.eissn=1879-2545&rft_id=info:doi/10.1016/j.optlastec.2022.108113&rft_dat=%3Cproquest_cross%3E2674422640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674422640&rft_id=info:pmid/&rft_els_id=S0030399222002705&rfr_iscdi=true |