Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models

In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-06, Vol.14 (11), p.6690
Hauptverfasser: Gorlapalli, Amuktamalyada, Kallakuri, Supriya, Sreekanth, Pagadala Damodaram, Patil, Rahul, Bandumula, Nirmala, Ondrasek, Gabrijel, Admala, Meena, Gireesh, Channappa, Anantha, Madhyavenkatapura Siddaiah, Parmar, Brajendra, Yadav, Brahamdeo Kumar, Sundaram, Raman Meenakshi, Rathod, Santosha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 6690
container_title Sustainability
container_volume 14
creator Gorlapalli, Amuktamalyada
Kallakuri, Supriya
Sreekanth, Pagadala Damodaram
Patil, Rahul
Bandumula, Nirmala
Ondrasek, Gabrijel
Admala, Meena
Gireesh, Channappa
Anantha, Madhyavenkatapura Siddaiah
Parmar, Brajendra
Yadav, Brahamdeo Kumar
Sundaram, Raman Meenakshi
Rathod, Santosha
description In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model. The results show that on the short-term SPI3 time scale the studied region experienced extreme water deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991, 2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6 time scales by AI models outperformed the classical ARIMA models in both, training and validation data sets. Among applied models, the SVR model performed better than other models in modeling and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano test confirmed that SVR output was significantly superior. A reduction in the prediction error of SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model to account for the nonlinear and complex patterns in the input data sets against the classical linear ARIMA model. These results may contribute to more sustainable and efficient management of water resources/stress in cropping systems.
doi_str_mv 10.3390/su14116690
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674417339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784034634</galeid><sourcerecordid>A784034634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-b206a906e18eae637d24eac4a48d787b1a7f186b97325a599c25ec63b20277ea3</originalsourceid><addsrcrecordid>eNpVkd9LwzAQgIsoOOZe_AsCPil0Jk2atI9j-GMwUdyGj-WWXmtG184kBfWvN26Cmjzkcvd9CdxF0TmjY85zeu16JhiTMqdH0SChisWMpvT4T3wajZzb0LA4ZzmTg6icvoIF7dGaT_Cmawm0JXmyWBq9v3YVeYFQJgtv0TmycqatydJskSyChG4vTKw3ldEGGjJrPTaNqbHVSB66Eht3Fp1U0Dgc_ZzDaHV7s5zex_PHu9l0Mo91kmc-XidUQk4lsgwBJVdlIhC0AJGVKlNrBqpimVzniicppHmukxS15MFLlELgw-ji8O7Odm89Ol9sut624csikUoIpkKfAjU-UDU0WJi26nzoQNglbo3uWqxMyE9UJigXkosgXP4TAuPx3dfQO1fMFs__2asDq23nnMWq2FmzBftRMFp8T6n4nRL_AgvMgvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674417339</pqid></control><display><type>article</type><title>Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gorlapalli, Amuktamalyada ; Kallakuri, Supriya ; Sreekanth, Pagadala Damodaram ; Patil, Rahul ; Bandumula, Nirmala ; Ondrasek, Gabrijel ; Admala, Meena ; Gireesh, Channappa ; Anantha, Madhyavenkatapura Siddaiah ; Parmar, Brajendra ; Yadav, Brahamdeo Kumar ; Sundaram, Raman Meenakshi ; Rathod, Santosha</creator><creatorcontrib>Gorlapalli, Amuktamalyada ; Kallakuri, Supriya ; Sreekanth, Pagadala Damodaram ; Patil, Rahul ; Bandumula, Nirmala ; Ondrasek, Gabrijel ; Admala, Meena ; Gireesh, Channappa ; Anantha, Madhyavenkatapura Siddaiah ; Parmar, Brajendra ; Yadav, Brahamdeo Kumar ; Sundaram, Raman Meenakshi ; Rathod, Santosha</creatorcontrib><description>In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model. The results show that on the short-term SPI3 time scale the studied region experienced extreme water deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991, 2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6 time scales by AI models outperformed the classical ARIMA models in both, training and validation data sets. Among applied models, the SVR model performed better than other models in modeling and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano test confirmed that SVR output was significantly superior. A reduction in the prediction error of SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model to account for the nonlinear and complex patterns in the input data sets against the classical linear ARIMA model. These results may contribute to more sustainable and efficient management of water resources/stress in cropping systems.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14116690</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural commodities ; Agricultural ecology ; Agricultural ecosystems ; Aquatic resources ; Artificial intelligence ; Autoregressive models ; China ; Climate change ; Cropping systems ; Datasets ; Drought ; Droughts ; Evapotranspiration ; Food security ; Hydrologic data ; Hydrology ; India ; Neural networks ; Precipitation ; Predictions ; Probability distribution ; Rain ; Random variables ; Root-mean-square errors ; Standardized precipitation index ; Statistical analysis ; Support vector machines ; Sustainability ; Time series ; Trinidad and Tobago ; Water deficit ; Water management ; Water resources ; Water resources management ; Water shortages ; Water stress</subject><ispartof>Sustainability, 2022-06, Vol.14 (11), p.6690</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-b206a906e18eae637d24eac4a48d787b1a7f186b97325a599c25ec63b20277ea3</citedby><cites>FETCH-LOGICAL-c298t-b206a906e18eae637d24eac4a48d787b1a7f186b97325a599c25ec63b20277ea3</cites><orcidid>0000-0003-3710-1676 ; 0000-0002-9857-8251 ; 0000-0001-9820-149X ; 0000-0001-8398-0099 ; 0000-0003-4219-0773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gorlapalli, Amuktamalyada</creatorcontrib><creatorcontrib>Kallakuri, Supriya</creatorcontrib><creatorcontrib>Sreekanth, Pagadala Damodaram</creatorcontrib><creatorcontrib>Patil, Rahul</creatorcontrib><creatorcontrib>Bandumula, Nirmala</creatorcontrib><creatorcontrib>Ondrasek, Gabrijel</creatorcontrib><creatorcontrib>Admala, Meena</creatorcontrib><creatorcontrib>Gireesh, Channappa</creatorcontrib><creatorcontrib>Anantha, Madhyavenkatapura Siddaiah</creatorcontrib><creatorcontrib>Parmar, Brajendra</creatorcontrib><creatorcontrib>Yadav, Brahamdeo Kumar</creatorcontrib><creatorcontrib>Sundaram, Raman Meenakshi</creatorcontrib><creatorcontrib>Rathod, Santosha</creatorcontrib><title>Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models</title><title>Sustainability</title><description>In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model. The results show that on the short-term SPI3 time scale the studied region experienced extreme water deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991, 2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6 time scales by AI models outperformed the classical ARIMA models in both, training and validation data sets. Among applied models, the SVR model performed better than other models in modeling and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano test confirmed that SVR output was significantly superior. A reduction in the prediction error of SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model to account for the nonlinear and complex patterns in the input data sets against the classical linear ARIMA model. These results may contribute to more sustainable and efficient management of water resources/stress in cropping systems.</description><subject>Agricultural commodities</subject><subject>Agricultural ecology</subject><subject>Agricultural ecosystems</subject><subject>Aquatic resources</subject><subject>Artificial intelligence</subject><subject>Autoregressive models</subject><subject>China</subject><subject>Climate change</subject><subject>Cropping systems</subject><subject>Datasets</subject><subject>Drought</subject><subject>Droughts</subject><subject>Evapotranspiration</subject><subject>Food security</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>India</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Probability distribution</subject><subject>Rain</subject><subject>Random variables</subject><subject>Root-mean-square errors</subject><subject>Standardized precipitation index</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>Time series</subject><subject>Trinidad and Tobago</subject><subject>Water deficit</subject><subject>Water management</subject><subject>Water resources</subject><subject>Water resources management</subject><subject>Water shortages</subject><subject>Water stress</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9LwzAQgIsoOOZe_AsCPil0Jk2atI9j-GMwUdyGj-WWXmtG184kBfWvN26Cmjzkcvd9CdxF0TmjY85zeu16JhiTMqdH0SChisWMpvT4T3wajZzb0LA4ZzmTg6icvoIF7dGaT_Cmawm0JXmyWBq9v3YVeYFQJgtv0TmycqatydJskSyChG4vTKw3ldEGGjJrPTaNqbHVSB66Eht3Fp1U0Dgc_ZzDaHV7s5zex_PHu9l0Mo91kmc-XidUQk4lsgwBJVdlIhC0AJGVKlNrBqpimVzniicppHmukxS15MFLlELgw-ji8O7Odm89Ol9sut624csikUoIpkKfAjU-UDU0WJi26nzoQNglbo3uWqxMyE9UJigXkosgXP4TAuPx3dfQO1fMFs__2asDq23nnMWq2FmzBftRMFp8T6n4nRL_AgvMgvE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Gorlapalli, Amuktamalyada</creator><creator>Kallakuri, Supriya</creator><creator>Sreekanth, Pagadala Damodaram</creator><creator>Patil, Rahul</creator><creator>Bandumula, Nirmala</creator><creator>Ondrasek, Gabrijel</creator><creator>Admala, Meena</creator><creator>Gireesh, Channappa</creator><creator>Anantha, Madhyavenkatapura Siddaiah</creator><creator>Parmar, Brajendra</creator><creator>Yadav, Brahamdeo Kumar</creator><creator>Sundaram, Raman Meenakshi</creator><creator>Rathod, Santosha</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3710-1676</orcidid><orcidid>https://orcid.org/0000-0002-9857-8251</orcidid><orcidid>https://orcid.org/0000-0001-9820-149X</orcidid><orcidid>https://orcid.org/0000-0001-8398-0099</orcidid><orcidid>https://orcid.org/0000-0003-4219-0773</orcidid></search><sort><creationdate>20220601</creationdate><title>Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models</title><author>Gorlapalli, Amuktamalyada ; Kallakuri, Supriya ; Sreekanth, Pagadala Damodaram ; Patil, Rahul ; Bandumula, Nirmala ; Ondrasek, Gabrijel ; Admala, Meena ; Gireesh, Channappa ; Anantha, Madhyavenkatapura Siddaiah ; Parmar, Brajendra ; Yadav, Brahamdeo Kumar ; Sundaram, Raman Meenakshi ; Rathod, Santosha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-b206a906e18eae637d24eac4a48d787b1a7f186b97325a599c25ec63b20277ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural commodities</topic><topic>Agricultural ecology</topic><topic>Agricultural ecosystems</topic><topic>Aquatic resources</topic><topic>Artificial intelligence</topic><topic>Autoregressive models</topic><topic>China</topic><topic>Climate change</topic><topic>Cropping systems</topic><topic>Datasets</topic><topic>Drought</topic><topic>Droughts</topic><topic>Evapotranspiration</topic><topic>Food security</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>India</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Probability distribution</topic><topic>Rain</topic><topic>Random variables</topic><topic>Root-mean-square errors</topic><topic>Standardized precipitation index</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>Time series</topic><topic>Trinidad and Tobago</topic><topic>Water deficit</topic><topic>Water management</topic><topic>Water resources</topic><topic>Water resources management</topic><topic>Water shortages</topic><topic>Water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorlapalli, Amuktamalyada</creatorcontrib><creatorcontrib>Kallakuri, Supriya</creatorcontrib><creatorcontrib>Sreekanth, Pagadala Damodaram</creatorcontrib><creatorcontrib>Patil, Rahul</creatorcontrib><creatorcontrib>Bandumula, Nirmala</creatorcontrib><creatorcontrib>Ondrasek, Gabrijel</creatorcontrib><creatorcontrib>Admala, Meena</creatorcontrib><creatorcontrib>Gireesh, Channappa</creatorcontrib><creatorcontrib>Anantha, Madhyavenkatapura Siddaiah</creatorcontrib><creatorcontrib>Parmar, Brajendra</creatorcontrib><creatorcontrib>Yadav, Brahamdeo Kumar</creatorcontrib><creatorcontrib>Sundaram, Raman Meenakshi</creatorcontrib><creatorcontrib>Rathod, Santosha</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorlapalli, Amuktamalyada</au><au>Kallakuri, Supriya</au><au>Sreekanth, Pagadala Damodaram</au><au>Patil, Rahul</au><au>Bandumula, Nirmala</au><au>Ondrasek, Gabrijel</au><au>Admala, Meena</au><au>Gireesh, Channappa</au><au>Anantha, Madhyavenkatapura Siddaiah</au><au>Parmar, Brajendra</au><au>Yadav, Brahamdeo Kumar</au><au>Sundaram, Raman Meenakshi</au><au>Rathod, Santosha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models</atitle><jtitle>Sustainability</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>6690</spage><pages>6690-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration and induces water stress in plants. The objective in this study was to characterize and forecast water stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model. The results show that on the short-term SPI3 time scale the studied region experienced extreme water deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991, 2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6 time scales by AI models outperformed the classical ARIMA models in both, training and validation data sets. Among applied models, the SVR model performed better than other models in modeling and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano test confirmed that SVR output was significantly superior. A reduction in the prediction error of SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model to account for the nonlinear and complex patterns in the input data sets against the classical linear ARIMA model. These results may contribute to more sustainable and efficient management of water resources/stress in cropping systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14116690</doi><orcidid>https://orcid.org/0000-0003-3710-1676</orcidid><orcidid>https://orcid.org/0000-0002-9857-8251</orcidid><orcidid>https://orcid.org/0000-0001-9820-149X</orcidid><orcidid>https://orcid.org/0000-0001-8398-0099</orcidid><orcidid>https://orcid.org/0000-0003-4219-0773</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-06, Vol.14 (11), p.6690
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2674417339
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Agricultural commodities
Agricultural ecology
Agricultural ecosystems
Aquatic resources
Artificial intelligence
Autoregressive models
China
Climate change
Cropping systems
Datasets
Drought
Droughts
Evapotranspiration
Food security
Hydrologic data
Hydrology
India
Neural networks
Precipitation
Predictions
Probability distribution
Rain
Random variables
Root-mean-square errors
Standardized precipitation index
Statistical analysis
Support vector machines
Sustainability
Time series
Trinidad and Tobago
Water deficit
Water management
Water resources
Water resources management
Water shortages
Water stress
title Characterization and Prediction of Water Stress Using Time Series and Artificial Intelligence Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Prediction%20of%20Water%20Stress%20Using%20Time%20Series%20and%20Artificial%20Intelligence%20Models&rft.jtitle=Sustainability&rft.au=Gorlapalli,%20Amuktamalyada&rft.date=2022-06-01&rft.volume=14&rft.issue=11&rft.spage=6690&rft.pages=6690-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14116690&rft_dat=%3Cgale_proqu%3EA784034634%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674417339&rft_id=info:pmid/&rft_galeid=A784034634&rfr_iscdi=true