Dynamics of Coupled Van der Pol Oscillators
In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraint...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-04, Vol.262 (6), p.817-824 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 6 |
container_start_page | 817 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 262 |
creator | Kulikov, D. A. |
description | In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions. |
doi_str_mv | 10.1007/s10958-022-05860-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674398890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727328282</galeid><sourcerecordid>A727328282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</originalsourceid><addsrcrecordid>eNp9kVtLwzAUx4soOKdfwKeCTyKZuTSXPo55Gwwm3l5Dmialo2tm0oL79kYrjMGQ83DC4ffLgfNPkksEJwhCfhsQzKkAEGMAqWAQsKNkhCgnQPCcHsc35BgQwrPT5CyEFYwSE2SU3NxtW7WudUidTWeu3zSmTD9Um5bGp8-uSZdB102jOufDeXJiVRPMxV8fJ-8P92-zJ7BYPs5n0wXQREAGioIRmlmqGS4zrjTLCGWMEUEx09pSTBAtFNUFssyWGMLSMESM4YxDQxAi4-Rq-Hfj3WdvQidXrvdtXCkx4xnJhcjhjqpUY2TdWtd5pdd10HLKMSdYxIoUOEBVpjVeNa41to7jPX5ygI9Vmnilg8L1nhCZznx1lepDkPPXl30WD6z2LgRvrNz4eq38ViIof3KUQ44y5ih_c5QsSmSQQoTbyvjdNf6xvgF53pqD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674398890</pqid></control><display><type>article</type><title>Dynamics of Coupled Van der Pol Oscillators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kulikov, D. A.</creator><creatorcontrib>Kulikov, D. A.</creatorcontrib><description>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-05860-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Canonical forms ; Differential equations ; Mathematics ; Mathematics and Statistics ; Oscillators ; Qualitative analysis ; Synchronism</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-04, Vol.262 (6), p.817-824</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</citedby><cites>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-05860-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-05860-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kulikov, D. A.</creatorcontrib><title>Dynamics of Coupled Van der Pol Oscillators</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Canonical forms</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillators</subject><subject>Qualitative analysis</subject><subject>Synchronism</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLwzAUx4soOKdfwKeCTyKZuTSXPo55Gwwm3l5Dmialo2tm0oL79kYrjMGQ83DC4ffLgfNPkksEJwhCfhsQzKkAEGMAqWAQsKNkhCgnQPCcHsc35BgQwrPT5CyEFYwSE2SU3NxtW7WudUidTWeu3zSmTD9Um5bGp8-uSZdB102jOufDeXJiVRPMxV8fJ-8P92-zJ7BYPs5n0wXQREAGioIRmlmqGS4zrjTLCGWMEUEx09pSTBAtFNUFssyWGMLSMESM4YxDQxAi4-Rq-Hfj3WdvQidXrvdtXCkx4xnJhcjhjqpUY2TdWtd5pdd10HLKMSdYxIoUOEBVpjVeNa41to7jPX5ygI9Vmnilg8L1nhCZznx1lepDkPPXl30WD6z2LgRvrNz4eq38ViIof3KUQ44y5ih_c5QsSmSQQoTbyvjdNf6xvgF53pqD</recordid><startdate>20220416</startdate><enddate>20220416</enddate><creator>Kulikov, D. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220416</creationdate><title>Dynamics of Coupled Van der Pol Oscillators</title><author>Kulikov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Canonical forms</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillators</topic><topic>Qualitative analysis</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Coupled Van der Pol Oscillators</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-04-16</date><risdate>2022</risdate><volume>262</volume><issue>6</issue><spage>817</spage><epage>824</epage><pages>817-824</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-05860-6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-04, Vol.262 (6), p.817-824 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2674398890 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Analysis Canonical forms Differential equations Mathematics Mathematics and Statistics Oscillators Qualitative analysis Synchronism |
title | Dynamics of Coupled Van der Pol Oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Coupled%20Van%20der%20Pol%20Oscillators&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kulikov,%20D.%20A.&rft.date=2022-04-16&rft.volume=262&rft.issue=6&rft.spage=817&rft.epage=824&rft.pages=817-824&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-05860-6&rft_dat=%3Cgale_proqu%3EA727328282%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674398890&rft_id=info:pmid/&rft_galeid=A727328282&rfr_iscdi=true |