Dynamics of Coupled Van der Pol Oscillators

In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-04, Vol.262 (6), p.817-824
1. Verfasser: Kulikov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 6
container_start_page 817
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 262
creator Kulikov, D. A.
description In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.
doi_str_mv 10.1007/s10958-022-05860-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2674398890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A727328282</galeid><sourcerecordid>A727328282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</originalsourceid><addsrcrecordid>eNp9kVtLwzAUx4soOKdfwKeCTyKZuTSXPo55Gwwm3l5Dmialo2tm0oL79kYrjMGQ83DC4ffLgfNPkksEJwhCfhsQzKkAEGMAqWAQsKNkhCgnQPCcHsc35BgQwrPT5CyEFYwSE2SU3NxtW7WudUidTWeu3zSmTD9Um5bGp8-uSZdB102jOufDeXJiVRPMxV8fJ-8P92-zJ7BYPs5n0wXQREAGioIRmlmqGS4zrjTLCGWMEUEx09pSTBAtFNUFssyWGMLSMESM4YxDQxAi4-Rq-Hfj3WdvQidXrvdtXCkx4xnJhcjhjqpUY2TdWtd5pdd10HLKMSdYxIoUOEBVpjVeNa41to7jPX5ygI9Vmnilg8L1nhCZznx1lepDkPPXl30WD6z2LgRvrNz4eq38ViIof3KUQ44y5ih_c5QsSmSQQoTbyvjdNf6xvgF53pqD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674398890</pqid></control><display><type>article</type><title>Dynamics of Coupled Van der Pol Oscillators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kulikov, D. A.</creator><creatorcontrib>Kulikov, D. A.</creatorcontrib><description>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-05860-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Canonical forms ; Differential equations ; Mathematics ; Mathematics and Statistics ; Oscillators ; Qualitative analysis ; Synchronism</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-04, Vol.262 (6), p.817-824</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</citedby><cites>FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-05860-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-05860-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kulikov, D. A.</creatorcontrib><title>Dynamics of Coupled Van der Pol Oscillators</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Canonical forms</subject><subject>Differential equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillators</subject><subject>Qualitative analysis</subject><subject>Synchronism</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLwzAUx4soOKdfwKeCTyKZuTSXPo55Gwwm3l5Dmialo2tm0oL79kYrjMGQ83DC4ffLgfNPkksEJwhCfhsQzKkAEGMAqWAQsKNkhCgnQPCcHsc35BgQwrPT5CyEFYwSE2SU3NxtW7WudUidTWeu3zSmTD9Um5bGp8-uSZdB102jOufDeXJiVRPMxV8fJ-8P92-zJ7BYPs5n0wXQREAGioIRmlmqGS4zrjTLCGWMEUEx09pSTBAtFNUFssyWGMLSMESM4YxDQxAi4-Rq-Hfj3WdvQidXrvdtXCkx4xnJhcjhjqpUY2TdWtd5pdd10HLKMSdYxIoUOEBVpjVeNa41to7jPX5ygI9Vmnilg8L1nhCZznx1lepDkPPXl30WD6z2LgRvrNz4eq38ViIof3KUQ44y5ih_c5QsSmSQQoTbyvjdNf6xvgF53pqD</recordid><startdate>20220416</startdate><enddate>20220416</enddate><creator>Kulikov, D. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220416</creationdate><title>Dynamics of Coupled Van der Pol Oscillators</title><author>Kulikov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3806-bb6354f5c62d47ac643566638526ccf52315ba5cb1f6fd200de613ee7670e3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Canonical forms</topic><topic>Differential equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillators</topic><topic>Qualitative analysis</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Coupled Van der Pol Oscillators</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-04-16</date><risdate>2022</risdate><volume>262</volume><issue>6</issue><spage>817</spage><epage>824</epage><pages>817-824</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we consider the problem on the synchronization of two or three Van der Pol oscillators in the case where the oscillators are identical and constraints between them are weak. The existence and stability of two types of periodic solutions are studied under the assumption that constraints between the oscillators are dissipative or active. The analysis of the problem is based on methods of the qualitative theory of differential equations, namely, the method of integral manifolds and the method of normal Poincaré–Dulac forms. The problem is reduced to the study of normal forms. We used a version of the Krylov–Bogolyubov algorithm, which allows one to obtain asymptotic formulas for periodic solutions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-05860-6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2022-04, Vol.262 (6), p.817-824
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2674398890
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Analysis
Canonical forms
Differential equations
Mathematics
Mathematics and Statistics
Oscillators
Qualitative analysis
Synchronism
title Dynamics of Coupled Van der Pol Oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A47%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Coupled%20Van%20der%20Pol%20Oscillators&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kulikov,%20D.%20A.&rft.date=2022-04-16&rft.volume=262&rft.issue=6&rft.spage=817&rft.epage=824&rft.pages=817-824&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-05860-6&rft_dat=%3Cgale_proqu%3EA727328282%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674398890&rft_id=info:pmid/&rft_galeid=A727328282&rfr_iscdi=true