Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault
In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed t...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-05, Vol.11 (11), p.1733 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1733 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Ho, Cong Minh Nguyen, Cong Hung Ahn, Kyoung Kwan |
description | In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the suspension system. Then, an adaptive control design is developed to compensate for the effects of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are guaranteed simultaneously under the predefined boundaries by the prescribed performance function (PPF) method. Besides, the objectives of handling stability and driving safety are also considered to enhance the suspension performance. The system stability is proved according to the Lyapunov theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation examples on the half-car model. The simulation results show that the proposed control can improve the suspension performance as the RMS acceleration value is decreased by 68.1%. |
doi_str_mv | 10.3390/electronics11111733 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674332044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674332044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1673-4677fdfa7b70a8bacfcecbe6f6f6e96c9b2a29db48cea8a2795693fa74e2e8013</originalsourceid><addsrcrecordid>eNptkE9Lw0AQxRdRsNR-Ai8LnqOb3ZjNHkuwVhBaqJ7DZDOLKWkS90-l_fRurQcPvjnMHH7vDTxCblN2L4RiD9ih9nboW-3Sk6QQF2TCmVSJ4opf_rmvycy5LYtSqSgEm5Awb2D07R7pIhyPB7qqHdo9WloOfQztqBksXUJnkhIsnesfdBPciL1rh55uDs7jztGv1n_QtUWnbVtjQ9doo3MHvUYKfXNyBvAxawGh8zfkykDncPa7p-R98fRWLpPX1fNLOX9NdJpLkWS5lKYxIGvJoKhBG426xtzEQZVrVXPgqqmzQiMUwKV6zJWIfIYcC5aKKbk75452-AzofLUdgu3jy4rnMhOCsyyLlDhT2g7OWTTVaNsd2EOVsupUcfVPxeIb4tl0uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674332044</pqid></control><display><type>article</type><title>Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ho, Cong Minh ; Nguyen, Cong Hung ; Ahn, Kyoung Kwan</creator><creatorcontrib>Ho, Cong Minh ; Nguyen, Cong Hung ; Ahn, Kyoung Kwan</creatorcontrib><description>In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the suspension system. Then, an adaptive control design is developed to compensate for the effects of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are guaranteed simultaneously under the predefined boundaries by the prescribed performance function (PPF) method. Besides, the objectives of handling stability and driving safety are also considered to enhance the suspension performance. The system stability is proved according to the Lyapunov theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation examples on the half-car model. The simulation results show that the proposed control can improve the suspension performance as the RMS acceleration value is decreased by 68.1%.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11111733</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Active control ; Actuators ; Adaptive control ; Control algorithms ; Control systems design ; Failure ; Fault tolerance ; Fuzzy control ; Fuzzy logic ; Fuzzy systems ; Neural networks ; Parameter uncertainty ; Passenger comfort ; Passengers ; Suspension systems ; Systems stability ; Vehicle safety</subject><ispartof>Electronics (Basel), 2022-05, Vol.11 (11), p.1733</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1673-4677fdfa7b70a8bacfcecbe6f6f6e96c9b2a29db48cea8a2795693fa74e2e8013</citedby><cites>FETCH-LOGICAL-c1673-4677fdfa7b70a8bacfcecbe6f6f6e96c9b2a29db48cea8a2795693fa74e2e8013</cites><orcidid>0000-0002-7927-3348 ; 0000-0003-3704-5950 ; 0000-0002-3302-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ho, Cong Minh</creatorcontrib><creatorcontrib>Nguyen, Cong Hung</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><title>Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault</title><title>Electronics (Basel)</title><description>In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the suspension system. Then, an adaptive control design is developed to compensate for the effects of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are guaranteed simultaneously under the predefined boundaries by the prescribed performance function (PPF) method. Besides, the objectives of handling stability and driving safety are also considered to enhance the suspension performance. The system stability is proved according to the Lyapunov theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation examples on the half-car model. The simulation results show that the proposed control can improve the suspension performance as the RMS acceleration value is decreased by 68.1%.</description><subject>Active control</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Failure</subject><subject>Fault tolerance</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Neural networks</subject><subject>Parameter uncertainty</subject><subject>Passenger comfort</subject><subject>Passengers</subject><subject>Suspension systems</subject><subject>Systems stability</subject><subject>Vehicle safety</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkE9Lw0AQxRdRsNR-Ai8LnqOb3ZjNHkuwVhBaqJ7DZDOLKWkS90-l_fRurQcPvjnMHH7vDTxCblN2L4RiD9ih9nboW-3Sk6QQF2TCmVSJ4opf_rmvycy5LYtSqSgEm5Awb2D07R7pIhyPB7qqHdo9WloOfQztqBksXUJnkhIsnesfdBPciL1rh55uDs7jztGv1n_QtUWnbVtjQ9doo3MHvUYKfXNyBvAxawGh8zfkykDncPa7p-R98fRWLpPX1fNLOX9NdJpLkWS5lKYxIGvJoKhBG426xtzEQZVrVXPgqqmzQiMUwKV6zJWIfIYcC5aKKbk75452-AzofLUdgu3jy4rnMhOCsyyLlDhT2g7OWTTVaNsd2EOVsupUcfVPxeIb4tl0uQ</recordid><startdate>20220530</startdate><enddate>20220530</enddate><creator>Ho, Cong Minh</creator><creator>Nguyen, Cong Hung</creator><creator>Ahn, Kyoung Kwan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7927-3348</orcidid><orcidid>https://orcid.org/0000-0003-3704-5950</orcidid><orcidid>https://orcid.org/0000-0002-3302-9681</orcidid></search><sort><creationdate>20220530</creationdate><title>Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault</title><author>Ho, Cong Minh ; Nguyen, Cong Hung ; Ahn, Kyoung Kwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1673-4677fdfa7b70a8bacfcecbe6f6f6e96c9b2a29db48cea8a2795693fa74e2e8013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Failure</topic><topic>Fault tolerance</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Neural networks</topic><topic>Parameter uncertainty</topic><topic>Passenger comfort</topic><topic>Passengers</topic><topic>Suspension systems</topic><topic>Systems stability</topic><topic>Vehicle safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Cong Minh</creatorcontrib><creatorcontrib>Nguyen, Cong Hung</creatorcontrib><creatorcontrib>Ahn, Kyoung Kwan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Cong Minh</au><au>Nguyen, Cong Hung</au><au>Ahn, Kyoung Kwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-05-30</date><risdate>2022</risdate><volume>11</volume><issue>11</issue><spage>1733</spage><pages>1733-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In this paper, an adaptive fuzzy observer-based fault-tolerant controller is designed for a half-car active suspension system under the presence of uncertain parameters, unknown masses of passengers, and actuator failures. To improve the control performance, fuzzy logic systems (FLSs) are employed to approximate the unknown functions caused by uncertain dynamics of the suspension system. Then, an adaptive control design is developed to compensate for the effects of a non-ideal actuator. To improve passenger comfort, both vertical and angular motions are guaranteed simultaneously under the predefined boundaries by the prescribed performance function (PPF) method. Besides, the objectives of handling stability and driving safety are also considered to enhance the suspension performance. The system stability is proved according to the Lyapunov theory. Finally, the effectiveness of the developed approach is evaluated by comparative simulation examples on the half-car model. The simulation results show that the proposed control can improve the suspension performance as the RMS acceleration value is decreased by 68.1%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11111733</doi><orcidid>https://orcid.org/0000-0002-7927-3348</orcidid><orcidid>https://orcid.org/0000-0003-3704-5950</orcidid><orcidid>https://orcid.org/0000-0002-3302-9681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-05, Vol.11 (11), p.1733 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2674332044 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Active control Actuators Adaptive control Control algorithms Control systems design Failure Fault tolerance Fuzzy control Fuzzy logic Fuzzy systems Neural networks Parameter uncertainty Passenger comfort Passengers Suspension systems Systems stability Vehicle safety |
title | Adaptive Fuzzy Observer Control for Half-Car Active Suspension Systems with Prescribed Performance and Actuator Fault |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Fuzzy%20Observer%20Control%20for%20Half-Car%20Active%20Suspension%20Systems%20with%20Prescribed%20Performance%20and%20Actuator%20Fault&rft.jtitle=Electronics%20(Basel)&rft.au=Ho,%20Cong%20Minh&rft.date=2022-05-30&rft.volume=11&rft.issue=11&rft.spage=1733&rft.pages=1733-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11111733&rft_dat=%3Cproquest_cross%3E2674332044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674332044&rft_id=info:pmid/&rfr_iscdi=true |