In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage

Superior high‐rate performance and ultralong cycling life have been constantly pursued for rechargeable sodium‐ion batteries (SIBs). In this work, a facile strategy is employed to successfully synthesize porous CoxP hierarchical nanostructures supported on a flexible carbon fiber cloth (CoxP@CFC), c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-06, Vol.34 (23), p.n/a
Hauptverfasser: Yuan, Guobao, Liu, Dapeng, Feng, Xilan, Shao, Mingzhe, Hao, Zhimin, Sun, Tao, Yu, Haohan, Ge, Huaiyun, Zuo, Xintao, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced materials (Weinheim)
container_volume 34
creator Yuan, Guobao
Liu, Dapeng
Feng, Xilan
Shao, Mingzhe
Hao, Zhimin
Sun, Tao
Yu, Haohan
Ge, Huaiyun
Zuo, Xintao
Zhang, Yu
description Superior high‐rate performance and ultralong cycling life have been constantly pursued for rechargeable sodium‐ion batteries (SIBs). In this work, a facile strategy is employed to successfully synthesize porous CoxP hierarchical nanostructures supported on a flexible carbon fiber cloth (CoxP@CFC), constructing a robust architecture of ordered nanoarrays. Via such a unique design, porous and bare structures can thoroughly expose the electroactive surfaces to the electrolyte, which is favorable for ultrafast sodium‐ion storage. In addition, the CFC provides an interconnected 3D conductive network to ensure firm electrical connection of the electrode materials. Besides the inherent flexibility of the CFC, the integration of the hierarchical structures of CoxP with the CFC, as well as the strong synergistic effect between them, effectively help to buffer the mechanical stress caused by repeated sodiation/desodiation, thereby guaranteeing the structural integrity of the overall electrode. Consequently, CoxP@CFC as an anode shows a record‐high capacity of 279 mAh g−1 at 5.0 A g−1 with almost no capacity attenuation after 9000 cycles. The mixed‐valence strategy and construction of an “all in one” electrode is employed to prepare flexible carbon fiber cloth supported porous CoxP hierarchical structures comprising nanoneedles and nanosheets. The as‐prepared CoxP@CFC electrode exhibits enhanced sodium‐storage performance with a high reversible capacity (814 mAh g−1), remarkable rate performance (279 mAh g−1 at 5.0 A g−1), and record ultralong cycling life (almost 100% capacity retention after 9000 cycles).
doi_str_mv 10.1002/adma.202108985
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2674196150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674196150</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2335-63531926c5f459c36089d32f5ae412d2a34340ff8df07c3aa7ee0b59126c752c3</originalsourceid><addsrcrecordid>eNo9UMtOwzAQtBBIlMKVsyXOKX7ETnysQksrFahUOEeO41BXSRzsRG3vfDiuinrZ2dXOjmYHgEeMJhgh8izLRk4IIhilImVXYIQZwVGMBLsGIyQoiwSP01tw5_0OISQ44iPwu2zhxvQDnMvCGSV7Y1toK7i2zg4eZvawhgujnXRqG9Y1fJet9b0bVD847WFgZ9IVAeam0A5mte23cG9CmR2U7k564WqtXWVdI1ulYWjgxpZmaOCmt05-63twU8na64d_HIOv-ewzW0Srj9dlNl1FHaHBPqeMYkG4YlXMhKI8PFpSUjGpY0xKImlMY1RVaVmhRFEpE61RwQQOJwkjio7B01m3c_Zn0L7Pd3ZwwZ_PCU9iLDhmKLDEmbU3tT7mnTONdMcco_wUc36KOb_EnE9f3qaXif4B5UJ0ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674196150</pqid></control><display><type>article</type><title>In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yuan, Guobao ; Liu, Dapeng ; Feng, Xilan ; Shao, Mingzhe ; Hao, Zhimin ; Sun, Tao ; Yu, Haohan ; Ge, Huaiyun ; Zuo, Xintao ; Zhang, Yu</creator><creatorcontrib>Yuan, Guobao ; Liu, Dapeng ; Feng, Xilan ; Shao, Mingzhe ; Hao, Zhimin ; Sun, Tao ; Yu, Haohan ; Ge, Huaiyun ; Zuo, Xintao ; Zhang, Yu</creatorcontrib><description>Superior high‐rate performance and ultralong cycling life have been constantly pursued for rechargeable sodium‐ion batteries (SIBs). In this work, a facile strategy is employed to successfully synthesize porous CoxP hierarchical nanostructures supported on a flexible carbon fiber cloth (CoxP@CFC), constructing a robust architecture of ordered nanoarrays. Via such a unique design, porous and bare structures can thoroughly expose the electroactive surfaces to the electrolyte, which is favorable for ultrafast sodium‐ion storage. In addition, the CFC provides an interconnected 3D conductive network to ensure firm electrical connection of the electrode materials. Besides the inherent flexibility of the CFC, the integration of the hierarchical structures of CoxP with the CFC, as well as the strong synergistic effect between them, effectively help to buffer the mechanical stress caused by repeated sodiation/desodiation, thereby guaranteeing the structural integrity of the overall electrode. Consequently, CoxP@CFC as an anode shows a record‐high capacity of 279 mAh g−1 at 5.0 A g−1 with almost no capacity attenuation after 9000 cycles. The mixed‐valence strategy and construction of an “all in one” electrode is employed to prepare flexible carbon fiber cloth supported porous CoxP hierarchical structures comprising nanoneedles and nanosheets. The as‐prepared CoxP@CFC electrode exhibits enhanced sodium‐storage performance with a high reversible capacity (814 mAh g−1), remarkable rate performance (279 mAh g−1 at 5.0 A g−1), and record ultralong cycling life (almost 100% capacity retention after 9000 cycles).</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202108985</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>carbon fiber cloth ; Carbon fibers ; Cloth ; cobalt phosphides ; Electrode materials ; Electrodes ; Ion storage ; Materials science ; mixed‐valence ; Nanostructure ; Rechargeable batteries ; Sodium-ion batteries ; Structural hierarchy ; Structural integrity ; Synergistic effect ; ultralong cycling life</subject><ispartof>Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4847-1552 ; 0000-0001-8231-2910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202108985$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202108985$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yuan, Guobao</creatorcontrib><creatorcontrib>Liu, Dapeng</creatorcontrib><creatorcontrib>Feng, Xilan</creatorcontrib><creatorcontrib>Shao, Mingzhe</creatorcontrib><creatorcontrib>Hao, Zhimin</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Yu, Haohan</creatorcontrib><creatorcontrib>Ge, Huaiyun</creatorcontrib><creatorcontrib>Zuo, Xintao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage</title><title>Advanced materials (Weinheim)</title><description>Superior high‐rate performance and ultralong cycling life have been constantly pursued for rechargeable sodium‐ion batteries (SIBs). In this work, a facile strategy is employed to successfully synthesize porous CoxP hierarchical nanostructures supported on a flexible carbon fiber cloth (CoxP@CFC), constructing a robust architecture of ordered nanoarrays. Via such a unique design, porous and bare structures can thoroughly expose the electroactive surfaces to the electrolyte, which is favorable for ultrafast sodium‐ion storage. In addition, the CFC provides an interconnected 3D conductive network to ensure firm electrical connection of the electrode materials. Besides the inherent flexibility of the CFC, the integration of the hierarchical structures of CoxP with the CFC, as well as the strong synergistic effect between them, effectively help to buffer the mechanical stress caused by repeated sodiation/desodiation, thereby guaranteeing the structural integrity of the overall electrode. Consequently, CoxP@CFC as an anode shows a record‐high capacity of 279 mAh g−1 at 5.0 A g−1 with almost no capacity attenuation after 9000 cycles. The mixed‐valence strategy and construction of an “all in one” electrode is employed to prepare flexible carbon fiber cloth supported porous CoxP hierarchical structures comprising nanoneedles and nanosheets. The as‐prepared CoxP@CFC electrode exhibits enhanced sodium‐storage performance with a high reversible capacity (814 mAh g−1), remarkable rate performance (279 mAh g−1 at 5.0 A g−1), and record ultralong cycling life (almost 100% capacity retention after 9000 cycles).</description><subject>carbon fiber cloth</subject><subject>Carbon fibers</subject><subject>Cloth</subject><subject>cobalt phosphides</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Ion storage</subject><subject>Materials science</subject><subject>mixed‐valence</subject><subject>Nanostructure</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><subject>Structural hierarchy</subject><subject>Structural integrity</subject><subject>Synergistic effect</subject><subject>ultralong cycling life</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQtBBIlMKVsyXOKX7ETnysQksrFahUOEeO41BXSRzsRG3vfDiuinrZ2dXOjmYHgEeMJhgh8izLRk4IIhilImVXYIQZwVGMBLsGIyQoiwSP01tw5_0OISQ44iPwu2zhxvQDnMvCGSV7Y1toK7i2zg4eZvawhgujnXRqG9Y1fJet9b0bVD847WFgZ9IVAeam0A5mte23cG9CmR2U7k564WqtXWVdI1ulYWjgxpZmaOCmt05-63twU8na64d_HIOv-ewzW0Srj9dlNl1FHaHBPqeMYkG4YlXMhKI8PFpSUjGpY0xKImlMY1RVaVmhRFEpE61RwQQOJwkjio7B01m3c_Zn0L7Pd3ZwwZ_PCU9iLDhmKLDEmbU3tT7mnTONdMcco_wUc36KOb_EnE9f3qaXif4B5UJ0ZA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Yuan, Guobao</creator><creator>Liu, Dapeng</creator><creator>Feng, Xilan</creator><creator>Shao, Mingzhe</creator><creator>Hao, Zhimin</creator><creator>Sun, Tao</creator><creator>Yu, Haohan</creator><creator>Ge, Huaiyun</creator><creator>Zuo, Xintao</creator><creator>Zhang, Yu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4847-1552</orcidid><orcidid>https://orcid.org/0000-0001-8231-2910</orcidid></search><sort><creationdate>20220601</creationdate><title>In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage</title><author>Yuan, Guobao ; Liu, Dapeng ; Feng, Xilan ; Shao, Mingzhe ; Hao, Zhimin ; Sun, Tao ; Yu, Haohan ; Ge, Huaiyun ; Zuo, Xintao ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2335-63531926c5f459c36089d32f5ae412d2a34340ff8df07c3aa7ee0b59126c752c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>carbon fiber cloth</topic><topic>Carbon fibers</topic><topic>Cloth</topic><topic>cobalt phosphides</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Ion storage</topic><topic>Materials science</topic><topic>mixed‐valence</topic><topic>Nanostructure</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><topic>Structural hierarchy</topic><topic>Structural integrity</topic><topic>Synergistic effect</topic><topic>ultralong cycling life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Guobao</creatorcontrib><creatorcontrib>Liu, Dapeng</creatorcontrib><creatorcontrib>Feng, Xilan</creatorcontrib><creatorcontrib>Shao, Mingzhe</creatorcontrib><creatorcontrib>Hao, Zhimin</creatorcontrib><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Yu, Haohan</creatorcontrib><creatorcontrib>Ge, Huaiyun</creatorcontrib><creatorcontrib>Zuo, Xintao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Guobao</au><au>Liu, Dapeng</au><au>Feng, Xilan</au><au>Shao, Mingzhe</au><au>Hao, Zhimin</au><au>Sun, Tao</au><au>Yu, Haohan</au><au>Ge, Huaiyun</au><au>Zuo, Xintao</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>34</volume><issue>23</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Superior high‐rate performance and ultralong cycling life have been constantly pursued for rechargeable sodium‐ion batteries (SIBs). In this work, a facile strategy is employed to successfully synthesize porous CoxP hierarchical nanostructures supported on a flexible carbon fiber cloth (CoxP@CFC), constructing a robust architecture of ordered nanoarrays. Via such a unique design, porous and bare structures can thoroughly expose the electroactive surfaces to the electrolyte, which is favorable for ultrafast sodium‐ion storage. In addition, the CFC provides an interconnected 3D conductive network to ensure firm electrical connection of the electrode materials. Besides the inherent flexibility of the CFC, the integration of the hierarchical structures of CoxP with the CFC, as well as the strong synergistic effect between them, effectively help to buffer the mechanical stress caused by repeated sodiation/desodiation, thereby guaranteeing the structural integrity of the overall electrode. Consequently, CoxP@CFC as an anode shows a record‐high capacity of 279 mAh g−1 at 5.0 A g−1 with almost no capacity attenuation after 9000 cycles. The mixed‐valence strategy and construction of an “all in one” electrode is employed to prepare flexible carbon fiber cloth supported porous CoxP hierarchical structures comprising nanoneedles and nanosheets. The as‐prepared CoxP@CFC electrode exhibits enhanced sodium‐storage performance with a high reversible capacity (814 mAh g−1), remarkable rate performance (279 mAh g−1 at 5.0 A g−1), and record ultralong cycling life (almost 100% capacity retention after 9000 cycles).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202108985</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4847-1552</orcidid><orcidid>https://orcid.org/0000-0001-8231-2910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-06, Vol.34 (23), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2674196150
source Wiley Online Library Journals Frontfile Complete
subjects carbon fiber cloth
Carbon fibers
Cloth
cobalt phosphides
Electrode materials
Electrodes
Ion storage
Materials science
mixed‐valence
Nanostructure
Rechargeable batteries
Sodium-ion batteries
Structural hierarchy
Structural integrity
Synergistic effect
ultralong cycling life
title In Situ Fabrication of Porous CoxP Hierarchical Nanostructures on Carbon Fiber Cloth with Exceptional Performance for Sodium Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A36%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Fabrication%20of%20Porous%20CoxP%20Hierarchical%20Nanostructures%20on%20Carbon%20Fiber%20Cloth%20with%20Exceptional%20Performance%20for%20Sodium%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Yuan,%20Guobao&rft.date=2022-06-01&rft.volume=34&rft.issue=23&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202108985&rft_dat=%3Cproquest_wiley%3E2674196150%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674196150&rft_id=info:pmid/&rfr_iscdi=true