Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions

Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Paletta, Quentin, Arbod, Guillaume, Lasenby, Joan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Paletta, Quentin
Arbod, Guillaume
Lasenby, Joan
description Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2674152405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674152405</sourcerecordid><originalsourceid>FETCH-proquest_journals_26741524053</originalsourceid><addsrcrecordid>eNqNjkELgkAUhJcgSKr_8KCzoKtWdI2iW5fuselLn-mu7VsN_31b9AM6zcB8M8xEBDJJ4nCbSjkTS-Y6iiK53sgsSwIxnltNAzEZDXdjMVfsSJc7yE17I-0tsHLYNOQQzI3RDsp5mOFFrgJ-jECtKpE_bW87awYsgLSzKqxMb4FNoyygRluO0FksKP8OLMT0rhrG5U_nYnU8XPan0E88e2R3rX1d--jq36ZxJtMoS_6j3vKtUAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674152405</pqid></control><display><type>article</type><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><source>Free E- Journals</source><creator>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</creator><creatorcontrib>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</creatorcontrib><description>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alternative energy sources ; Cloud cover ; Electric power grids ; Irradiance ; Machine learning ; Meteorological satellites ; Nowcasting ; Renewable energy sources ; Satellite imagery ; Satellite observation ; Sky ; Solar energy ; Weather forecasting</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Paletta, Quentin</creatorcontrib><creatorcontrib>Arbod, Guillaume</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><title>arXiv.org</title><description>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</description><subject>Alternative energy sources</subject><subject>Cloud cover</subject><subject>Electric power grids</subject><subject>Irradiance</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Nowcasting</subject><subject>Renewable energy sources</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Sky</subject><subject>Solar energy</subject><subject>Weather forecasting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkELgkAUhJcgSKr_8KCzoKtWdI2iW5fuselLn-mu7VsN_31b9AM6zcB8M8xEBDJJ4nCbSjkTS-Y6iiK53sgsSwIxnltNAzEZDXdjMVfsSJc7yE17I-0tsHLYNOQQzI3RDsp5mOFFrgJ-jECtKpE_bW87awYsgLSzKqxMb4FNoyygRluO0FksKP8OLMT0rhrG5U_nYnU8XPan0E88e2R3rX1d--jq36ZxJtMoS_6j3vKtUAo</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Paletta, Quentin</creator><creator>Arbod, Guillaume</creator><creator>Lasenby, Joan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220607</creationdate><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><author>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26741524053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Cloud cover</topic><topic>Electric power grids</topic><topic>Irradiance</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Nowcasting</topic><topic>Renewable energy sources</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Sky</topic><topic>Solar energy</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Paletta, Quentin</creatorcontrib><creatorcontrib>Arbod, Guillaume</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paletta, Quentin</au><au>Arbod, Guillaume</au><au>Lasenby, Joan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</atitle><jtitle>arXiv.org</jtitle><date>2022-06-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2674152405
source Free E- Journals
subjects Alternative energy sources
Cloud cover
Electric power grids
Irradiance
Machine learning
Meteorological satellites
Nowcasting
Renewable energy sources
Satellite imagery
Satellite observation
Sky
Solar energy
Weather forecasting
title Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Omnivision%20forecasting:%20combining%20satellite%20observations%20with%20sky%20images%20for%20improved%20intra-hour%20solar%20energy%20predictions&rft.jtitle=arXiv.org&rft.au=Paletta,%20Quentin&rft.date=2022-06-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2674152405%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674152405&rft_id=info:pmid/&rfr_iscdi=true