Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions
Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Paletta, Quentin Arbod, Guillaume Lasenby, Joan |
description | Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2674152405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674152405</sourcerecordid><originalsourceid>FETCH-proquest_journals_26741524053</originalsourceid><addsrcrecordid>eNqNjkELgkAUhJcgSKr_8KCzoKtWdI2iW5fuselLn-mu7VsN_31b9AM6zcB8M8xEBDJJ4nCbSjkTS-Y6iiK53sgsSwIxnltNAzEZDXdjMVfsSJc7yE17I-0tsHLYNOQQzI3RDsp5mOFFrgJ-jECtKpE_bW87awYsgLSzKqxMb4FNoyygRluO0FksKP8OLMT0rhrG5U_nYnU8XPan0E88e2R3rX1d--jq36ZxJtMoS_6j3vKtUAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674152405</pqid></control><display><type>article</type><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><source>Free E- Journals</source><creator>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</creator><creatorcontrib>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</creatorcontrib><description>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alternative energy sources ; Cloud cover ; Electric power grids ; Irradiance ; Machine learning ; Meteorological satellites ; Nowcasting ; Renewable energy sources ; Satellite imagery ; Satellite observation ; Sky ; Solar energy ; Weather forecasting</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Paletta, Quentin</creatorcontrib><creatorcontrib>Arbod, Guillaume</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><title>arXiv.org</title><description>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</description><subject>Alternative energy sources</subject><subject>Cloud cover</subject><subject>Electric power grids</subject><subject>Irradiance</subject><subject>Machine learning</subject><subject>Meteorological satellites</subject><subject>Nowcasting</subject><subject>Renewable energy sources</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Sky</subject><subject>Solar energy</subject><subject>Weather forecasting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjkELgkAUhJcgSKr_8KCzoKtWdI2iW5fuselLn-mu7VsN_31b9AM6zcB8M8xEBDJJ4nCbSjkTS-Y6iiK53sgsSwIxnltNAzEZDXdjMVfsSJc7yE17I-0tsHLYNOQQzI3RDsp5mOFFrgJ-jECtKpE_bW87awYsgLSzKqxMb4FNoyygRluO0FksKP8OLMT0rhrG5U_nYnU8XPan0E88e2R3rX1d--jq36ZxJtMoS_6j3vKtUAo</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Paletta, Quentin</creator><creator>Arbod, Guillaume</creator><creator>Lasenby, Joan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220607</creationdate><title>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</title><author>Paletta, Quentin ; Arbod, Guillaume ; Lasenby, Joan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26741524053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternative energy sources</topic><topic>Cloud cover</topic><topic>Electric power grids</topic><topic>Irradiance</topic><topic>Machine learning</topic><topic>Meteorological satellites</topic><topic>Nowcasting</topic><topic>Renewable energy sources</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Sky</topic><topic>Solar energy</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Paletta, Quentin</creatorcontrib><creatorcontrib>Arbod, Guillaume</creatorcontrib><creatorcontrib>Lasenby, Joan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paletta, Quentin</au><au>Arbod, Guillaume</au><au>Lasenby, Joan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions</atitle><jtitle>arXiv.org</jtitle><date>2022-06-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Integration of intermittent renewable energy sources into electric grids in large proportions is challenging. A well-established approach aimed at addressing this difficulty involves the anticipation of the upcoming energy supply variability to adapt the response of the grid. In solar energy, short-term changes in electricity production caused by occluding clouds can be predicted at different time scales from all-sky cameras (up to 30-min ahead) and satellite observations (up to 6h ahead). In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework to improve intra-hour (up to 60-min ahead) irradiance forecasting. Both deterministic and probabilistic predictions are evaluated in different weather conditions (clear-sky, cloudy, overcast) and with different input configurations (sky images, satellite observations and/or past irradiance values). Our results show that the hybrid model benefits predictions in clear-sky conditions and improves longer-term forecasting. This study lays the groundwork for future novel approaches of combining sky images and satellite observations in a single learning framework to advance solar nowcasting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2674152405 |
source | Free E- Journals |
subjects | Alternative energy sources Cloud cover Electric power grids Irradiance Machine learning Meteorological satellites Nowcasting Renewable energy sources Satellite imagery Satellite observation Sky Solar energy Weather forecasting |
title | Omnivision forecasting: combining satellite observations with sky images for improved intra-hour solar energy predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Omnivision%20forecasting:%20combining%20satellite%20observations%20with%20sky%20images%20for%20improved%20intra-hour%20solar%20energy%20predictions&rft.jtitle=arXiv.org&rft.au=Paletta,%20Quentin&rft.date=2022-06-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2674152405%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674152405&rft_id=info:pmid/&rfr_iscdi=true |