Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking

Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Domae, Benjamin W, Boljanovic, Veljko, Li, Ruifu, Cabric, Danijela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Domae, Benjamin W
Boljanovic, Veljko
Li, Ruifu
Cabric, Danijela
description Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phase-less power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2674148729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674148729</sourcerecordid><originalsourceid>FETCH-proquest_journals_26741487293</originalsourceid><addsrcrecordid>eNqNjcEKgkAURYcgSMp_GGg9oDOati0KFwkugpbysGeOjTM1T_v-XPQBre7inMNdsEAqFYs8kXLFQqI-iiK5y2SaqoAVJTSdtsgvCN5q--CVx7tuRu0sb53nVQeEwiARL7UxesARvbjBB_kBYeBXD81z7jZs2YIhDH-7Ztvz6XosxMu794Q01r2bvJ1RPZ8ncZJncq_-s74LiTuf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674148729</pqid></control><display><type>article</type><title>Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking</title><source>Free E- Journals</source><creator>Domae, Benjamin W ; Boljanovic, Veljko ; Li, Ruifu ; Cabric, Danijela</creator><creatorcontrib>Domae, Benjamin W ; Boljanovic, Veljko ; Li, Ruifu ; Cabric, Danijela</creatorcontrib><description>Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phase-less power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Alignment ; Antenna arrays ; Antennas ; Arrays ; Electronic devices ; Machine learning ; Millimeter waves ; Phase noise ; Power management ; Power measurement ; Tracking ; Wireless networks</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Domae, Benjamin W</creatorcontrib><creatorcontrib>Boljanovic, Veljko</creatorcontrib><creatorcontrib>Li, Ruifu</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><title>Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking</title><title>arXiv.org</title><description>Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phase-less power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Electronic devices</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>Phase noise</subject><subject>Power management</subject><subject>Power measurement</subject><subject>Tracking</subject><subject>Wireless networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcEKgkAURYcgSMp_GGg9oDOati0KFwkugpbysGeOjTM1T_v-XPQBre7inMNdsEAqFYs8kXLFQqI-iiK5y2SaqoAVJTSdtsgvCN5q--CVx7tuRu0sb53nVQeEwiARL7UxesARvbjBB_kBYeBXD81z7jZs2YIhDH-7Ztvz6XosxMu794Q01r2bvJ1RPZ8ncZJncq_-s74LiTuf</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Domae, Benjamin W</creator><creator>Boljanovic, Veljko</creator><creator>Li, Ruifu</creator><creator>Cabric, Danijela</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220606</creationdate><title>Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking</title><author>Domae, Benjamin W ; Boljanovic, Veljko ; Li, Ruifu ; Cabric, Danijela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26741487293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Electronic devices</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>Phase noise</topic><topic>Power management</topic><topic>Power measurement</topic><topic>Tracking</topic><topic>Wireless networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Domae, Benjamin W</creatorcontrib><creatorcontrib>Boljanovic, Veljko</creatorcontrib><creatorcontrib>Li, Ruifu</creatorcontrib><creatorcontrib>Cabric, Danijela</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domae, Benjamin W</au><au>Boljanovic, Veljko</au><au>Li, Ruifu</au><au>Cabric, Danijela</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking</atitle><jtitle>arXiv.org</jtitle><date>2022-06-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Future wireless networks may operate at millimeter-wave (mmW) and sub-terahertz (sub-THz) frequencies to enable high data rate requirements. While large antenna arrays are critical for reliable communications at mmW and sub-THz bands, these antenna arrays would also mandate efficient and scalable initial beam alignment and link maintenance algorithms for mobile devices. Low-power phased-array architectures and phase-less power measurements due to high frequency oscillator phase noise pose additional challenges for practical beam tracking algorithms. Traditional beam tracking protocols require exhaustive sweeps of all possible beam directions and scale poorly with high mobility and large arrays. Compressive sensing and machine learning designs have been proposed to improve measurement scaling with array size but commonly degrade under hardware impairments or require raw samples respectively. In this work, we introduce a novel long short-term memory (LSTM) network assisted beam tracking and prediction algorithm utilizing only phase-less measurements from fixed compressive codebooks. We demonstrate comparable beam alignment accuracy to state-of-the-art phase-less beam alignment algorithms, while reducing the average number of required measurements over time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2674148729
source Free E- Journals
subjects Algorithms
Alignment
Antenna arrays
Antennas
Arrays
Electronic devices
Machine learning
Millimeter waves
Phase noise
Power management
Power measurement
Tracking
Wireless networks
title Machine Learning Prediction for Phase-less Millimeter-Wave Beam Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20Learning%20Prediction%20for%20Phase-less%20Millimeter-Wave%20Beam%20Tracking&rft.jtitle=arXiv.org&rft.au=Domae,%20Benjamin%20W&rft.date=2022-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2674148729%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674148729&rft_id=info:pmid/&rfr_iscdi=true