Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling
InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-06, Vol.131 (22) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Caria, Alessandro Nicoletto, Marco De Santi, Carlo Buffolo, Matteo Huang, Xuanqi Fu, Houqiang Chen, Hong Zhao, Yuji Meneghesso, Gaudenzio Zanoni, Enrico Meneghini, Matteo |
description | InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity. |
doi_str_mv | 10.1063/5.0076833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2674099696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674099696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</originalsourceid><addsrcrecordid>eNqd0MFOGzEQAFALFYmU9tA_sOBEpaX2eu1dc0MI0khRERKcLccek402dmJ7ofTEP_QP-ZKaJlLvvcyMrKcZzyD0hZJzSgT7xs8JaUXH2AGaUNLJquWcfEATQmpadbKVR-hjSitCKO2YnKDhbtQ-j2sMzvWmB29ecHB45qf6x9vr7xLxehxyX2337hmGAacw6IhNKdMFvv65gdivwWc9YLPUUZtcHn7p3AePtbd4HSwMvX_8hA6dHhJ83udj9HBzfX_1vZrfTmdXl_PKMNKwignOOsE7TWrddE29kJaVqpULLviiNk4AtQ046xqxIAys1RKopg20FhoO7Bid7PqGlHuVTJ_BLE3wHkxWtGupoHVBpzu0iWE7QspqFcboy79ULdqGSCmkKOpsp0wMKUVwalN21fFFUaLeL6642l-82K87-z7x7_b_h59C_AfVxjr2Bz8ckGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674099696</pqid></control><display><type>article</type><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creator><creatorcontrib>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creatorcontrib><description>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0076833</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorptivity ; Applied physics ; Efficiency ; Gallium nitrides ; Indium gallium nitrides ; Luminous intensity ; Modelling ; Multi Quantum Wells ; P-n junctions ; Photovoltaic cells ; Quantum confinement ; Quantum efficiency ; Red shift ; Solar cells ; Space applications ; Spectral sensitivity ; Temperature dependence ; Thickness ; Wireless power transmission</subject><ispartof>Journal of applied physics, 2022-06, Vol.131 (22)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</citedby><cites>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</cites><orcidid>0000-0001-7400-6243 ; 0000-0002-6715-4827 ; 0000-0001-6064-077X ; 0000-0002-1125-8328 ; 0000-0002-9255-6457 ; 0000-0002-7085-4162 ; 0000-0003-2421-505X ; 0000000211258328 ; 0000000174006243 ; 0000000270854162 ; 0000000292556457 ; 0000000267154827 ; 000000016064077X ; 000000032421505X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0076833$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1871612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Caria, Alessandro</creatorcontrib><creatorcontrib>Nicoletto, Marco</creatorcontrib><creatorcontrib>De Santi, Carlo</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Huang, Xuanqi</creatorcontrib><creatorcontrib>Fu, Houqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Yuji</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><title>Journal of applied physics</title><description>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</description><subject>Absorptivity</subject><subject>Applied physics</subject><subject>Efficiency</subject><subject>Gallium nitrides</subject><subject>Indium gallium nitrides</subject><subject>Luminous intensity</subject><subject>Modelling</subject><subject>Multi Quantum Wells</subject><subject>P-n junctions</subject><subject>Photovoltaic cells</subject><subject>Quantum confinement</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>Solar cells</subject><subject>Space applications</subject><subject>Spectral sensitivity</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Wireless power transmission</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0MFOGzEQAFALFYmU9tA_sOBEpaX2eu1dc0MI0khRERKcLccek402dmJ7ofTEP_QP-ZKaJlLvvcyMrKcZzyD0hZJzSgT7xs8JaUXH2AGaUNLJquWcfEATQmpadbKVR-hjSitCKO2YnKDhbtQ-j2sMzvWmB29ecHB45qf6x9vr7xLxehxyX2337hmGAacw6IhNKdMFvv65gdivwWc9YLPUUZtcHn7p3AePtbd4HSwMvX_8hA6dHhJ83udj9HBzfX_1vZrfTmdXl_PKMNKwignOOsE7TWrddE29kJaVqpULLviiNk4AtQ046xqxIAys1RKopg20FhoO7Bid7PqGlHuVTJ_BLE3wHkxWtGupoHVBpzu0iWE7QspqFcboy79ULdqGSCmkKOpsp0wMKUVwalN21fFFUaLeL6642l-82K87-z7x7_b_h59C_AfVxjr2Bz8ckGc</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Caria, Alessandro</creator><creator>Nicoletto, Marco</creator><creator>De Santi, Carlo</creator><creator>Buffolo, Matteo</creator><creator>Huang, Xuanqi</creator><creator>Fu, Houqiang</creator><creator>Chen, Hong</creator><creator>Zhao, Yuji</creator><creator>Meneghesso, Gaudenzio</creator><creator>Zanoni, Enrico</creator><creator>Meneghini, Matteo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7400-6243</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0002-1125-8328</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-7085-4162</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000000211258328</orcidid><orcidid>https://orcid.org/0000000174006243</orcidid><orcidid>https://orcid.org/0000000270854162</orcidid><orcidid>https://orcid.org/0000000292556457</orcidid><orcidid>https://orcid.org/0000000267154827</orcidid><orcidid>https://orcid.org/000000016064077X</orcidid><orcidid>https://orcid.org/000000032421505X</orcidid></search><sort><creationdate>20220614</creationdate><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><author>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptivity</topic><topic>Applied physics</topic><topic>Efficiency</topic><topic>Gallium nitrides</topic><topic>Indium gallium nitrides</topic><topic>Luminous intensity</topic><topic>Modelling</topic><topic>Multi Quantum Wells</topic><topic>P-n junctions</topic><topic>Photovoltaic cells</topic><topic>Quantum confinement</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>Solar cells</topic><topic>Space applications</topic><topic>Spectral sensitivity</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caria, Alessandro</creatorcontrib><creatorcontrib>Nicoletto, Marco</creatorcontrib><creatorcontrib>De Santi, Carlo</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Huang, Xuanqi</creatorcontrib><creatorcontrib>Fu, Houqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Yuji</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caria, Alessandro</au><au>Nicoletto, Marco</au><au>De Santi, Carlo</au><au>Buffolo, Matteo</au><au>Huang, Xuanqi</au><au>Fu, Houqiang</au><au>Chen, Hong</au><au>Zhao, Yuji</au><au>Meneghesso, Gaudenzio</au><au>Zanoni, Enrico</au><au>Meneghini, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</atitle><jtitle>Journal of applied physics</jtitle><date>2022-06-14</date><risdate>2022</risdate><volume>131</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0076833</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7400-6243</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0002-1125-8328</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-7085-4162</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000000211258328</orcidid><orcidid>https://orcid.org/0000000174006243</orcidid><orcidid>https://orcid.org/0000000270854162</orcidid><orcidid>https://orcid.org/0000000292556457</orcidid><orcidid>https://orcid.org/0000000267154827</orcidid><orcidid>https://orcid.org/000000016064077X</orcidid><orcidid>https://orcid.org/000000032421505X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-06, Vol.131 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2674099696 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorptivity Applied physics Efficiency Gallium nitrides Indium gallium nitrides Luminous intensity Modelling Multi Quantum Wells P-n junctions Photovoltaic cells Quantum confinement Quantum efficiency Red shift Solar cells Space applications Spectral sensitivity Temperature dependence Thickness Wireless power transmission |
title | Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20efficiency%20of%20InGaN%E2%80%93GaN%20multi-quantum%20well%20solar%20cells:%20Experimental%20characterization%20and%20modeling&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Caria,%20Alessandro&rft.date=2022-06-14&rft.volume=131&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0076833&rft_dat=%3Cproquest_osti_%3E2674099696%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674099696&rft_id=info:pmid/&rfr_iscdi=true |