Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling

InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-06, Vol.131 (22)
Hauptverfasser: Caria, Alessandro, Nicoletto, Marco, De Santi, Carlo, Buffolo, Matteo, Huang, Xuanqi, Fu, Houqiang, Chen, Hong, Zhao, Yuji, Meneghesso, Gaudenzio, Zanoni, Enrico, Meneghini, Matteo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Journal of applied physics
container_volume 131
creator Caria, Alessandro
Nicoletto, Marco
De Santi, Carlo
Buffolo, Matteo
Huang, Xuanqi
Fu, Houqiang
Chen, Hong
Zhao, Yuji
Meneghesso, Gaudenzio
Zanoni, Enrico
Meneghini, Matteo
description InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.
doi_str_mv 10.1063/5.0076833
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2674099696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674099696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</originalsourceid><addsrcrecordid>eNqd0MFOGzEQAFALFYmU9tA_sOBEpaX2eu1dc0MI0khRERKcLccek402dmJ7ofTEP_QP-ZKaJlLvvcyMrKcZzyD0hZJzSgT7xs8JaUXH2AGaUNLJquWcfEATQmpadbKVR-hjSitCKO2YnKDhbtQ-j2sMzvWmB29ecHB45qf6x9vr7xLxehxyX2337hmGAacw6IhNKdMFvv65gdivwWc9YLPUUZtcHn7p3AePtbd4HSwMvX_8hA6dHhJ83udj9HBzfX_1vZrfTmdXl_PKMNKwignOOsE7TWrddE29kJaVqpULLviiNk4AtQ046xqxIAys1RKopg20FhoO7Bid7PqGlHuVTJ_BLE3wHkxWtGupoHVBpzu0iWE7QspqFcboy79ULdqGSCmkKOpsp0wMKUVwalN21fFFUaLeL6642l-82K87-z7x7_b_h59C_AfVxjr2Bz8ckGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674099696</pqid></control><display><type>article</type><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creator><creatorcontrib>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</creatorcontrib><description>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0076833</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorptivity ; Applied physics ; Efficiency ; Gallium nitrides ; Indium gallium nitrides ; Luminous intensity ; Modelling ; Multi Quantum Wells ; P-n junctions ; Photovoltaic cells ; Quantum confinement ; Quantum efficiency ; Red shift ; Solar cells ; Space applications ; Spectral sensitivity ; Temperature dependence ; Thickness ; Wireless power transmission</subject><ispartof>Journal of applied physics, 2022-06, Vol.131 (22)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</citedby><cites>FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</cites><orcidid>0000-0001-7400-6243 ; 0000-0002-6715-4827 ; 0000-0001-6064-077X ; 0000-0002-1125-8328 ; 0000-0002-9255-6457 ; 0000-0002-7085-4162 ; 0000-0003-2421-505X ; 0000000211258328 ; 0000000174006243 ; 0000000270854162 ; 0000000292556457 ; 0000000267154827 ; 000000016064077X ; 000000032421505X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0076833$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1871612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Caria, Alessandro</creatorcontrib><creatorcontrib>Nicoletto, Marco</creatorcontrib><creatorcontrib>De Santi, Carlo</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Huang, Xuanqi</creatorcontrib><creatorcontrib>Fu, Houqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Yuji</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><title>Journal of applied physics</title><description>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</description><subject>Absorptivity</subject><subject>Applied physics</subject><subject>Efficiency</subject><subject>Gallium nitrides</subject><subject>Indium gallium nitrides</subject><subject>Luminous intensity</subject><subject>Modelling</subject><subject>Multi Quantum Wells</subject><subject>P-n junctions</subject><subject>Photovoltaic cells</subject><subject>Quantum confinement</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>Solar cells</subject><subject>Space applications</subject><subject>Spectral sensitivity</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Wireless power transmission</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0MFOGzEQAFALFYmU9tA_sOBEpaX2eu1dc0MI0khRERKcLccek402dmJ7ofTEP_QP-ZKaJlLvvcyMrKcZzyD0hZJzSgT7xs8JaUXH2AGaUNLJquWcfEATQmpadbKVR-hjSitCKO2YnKDhbtQ-j2sMzvWmB29ecHB45qf6x9vr7xLxehxyX2337hmGAacw6IhNKdMFvv65gdivwWc9YLPUUZtcHn7p3AePtbd4HSwMvX_8hA6dHhJ83udj9HBzfX_1vZrfTmdXl_PKMNKwignOOsE7TWrddE29kJaVqpULLviiNk4AtQ046xqxIAys1RKopg20FhoO7Bid7PqGlHuVTJ_BLE3wHkxWtGupoHVBpzu0iWE7QspqFcboy79ULdqGSCmkKOpsp0wMKUVwalN21fFFUaLeL6642l-82K87-z7x7_b_h59C_AfVxjr2Bz8ckGc</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Caria, Alessandro</creator><creator>Nicoletto, Marco</creator><creator>De Santi, Carlo</creator><creator>Buffolo, Matteo</creator><creator>Huang, Xuanqi</creator><creator>Fu, Houqiang</creator><creator>Chen, Hong</creator><creator>Zhao, Yuji</creator><creator>Meneghesso, Gaudenzio</creator><creator>Zanoni, Enrico</creator><creator>Meneghini, Matteo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7400-6243</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0002-1125-8328</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-7085-4162</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000000211258328</orcidid><orcidid>https://orcid.org/0000000174006243</orcidid><orcidid>https://orcid.org/0000000270854162</orcidid><orcidid>https://orcid.org/0000000292556457</orcidid><orcidid>https://orcid.org/0000000267154827</orcidid><orcidid>https://orcid.org/000000016064077X</orcidid><orcidid>https://orcid.org/000000032421505X</orcidid></search><sort><creationdate>20220614</creationdate><title>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</title><author>Caria, Alessandro ; Nicoletto, Marco ; De Santi, Carlo ; Buffolo, Matteo ; Huang, Xuanqi ; Fu, Houqiang ; Chen, Hong ; Zhao, Yuji ; Meneghesso, Gaudenzio ; Zanoni, Enrico ; Meneghini, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3043-36538658a02a4842b9d32a479b565b2cf6e1d4efdf46b03edda9e1a14e7de45e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorptivity</topic><topic>Applied physics</topic><topic>Efficiency</topic><topic>Gallium nitrides</topic><topic>Indium gallium nitrides</topic><topic>Luminous intensity</topic><topic>Modelling</topic><topic>Multi Quantum Wells</topic><topic>P-n junctions</topic><topic>Photovoltaic cells</topic><topic>Quantum confinement</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>Solar cells</topic><topic>Space applications</topic><topic>Spectral sensitivity</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Wireless power transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caria, Alessandro</creatorcontrib><creatorcontrib>Nicoletto, Marco</creatorcontrib><creatorcontrib>De Santi, Carlo</creatorcontrib><creatorcontrib>Buffolo, Matteo</creatorcontrib><creatorcontrib>Huang, Xuanqi</creatorcontrib><creatorcontrib>Fu, Houqiang</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Yuji</creatorcontrib><creatorcontrib>Meneghesso, Gaudenzio</creatorcontrib><creatorcontrib>Zanoni, Enrico</creatorcontrib><creatorcontrib>Meneghini, Matteo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caria, Alessandro</au><au>Nicoletto, Marco</au><au>De Santi, Carlo</au><au>Buffolo, Matteo</au><au>Huang, Xuanqi</au><au>Fu, Houqiang</au><au>Chen, Hong</au><au>Zhao, Yuji</au><au>Meneghesso, Gaudenzio</au><au>Zanoni, Enrico</au><au>Meneghini, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling</atitle><jtitle>Journal of applied physics</jtitle><date>2022-06-14</date><risdate>2022</risdate><volume>131</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>InGaN-based multi-quantum well (MQW) solar cells are promising devices for photovoltaics (e.g., for tandem solar cells and concentrator systems), space applications, and wireless power transfer. In order to improve the efficiency of these devices, the factors limiting their efficiency and stability must be investigated in detail. Due to the complexity of a MQW structure, compared with a simple pn junction, modeling the spectral response of these solar cells is not straightforward, and ad hoc methodologies must be implemented. In this paper, we propose a model, based on material parameters and closed-formula equations, that describes the shape of the quantum efficiency of InGaN/GaN MQW solar cells, by taking into account the layer thickness, the temperature dependence of the absorption coefficient, and quantum confinement effects. We demonstrate (i) that the proposed model can effectively reproduce the spectral response of the cells; in addition, (ii) we prove that the bulk p-GaN layer absorbs radiation, but the carriers photogenerated in this region do not significantly contribute to device current. Finally, we show that (iii) by increasing the temperature, there is a redshift of the absorption edge due to bandgap narrowing, which can be described by Varshni law and is taken into account by the model, and a lowering in the extraction efficiency due to the increase in recombination (mostly Shockley–Read–Hall) inside the quantum wells, which is also visible by decreasing light intensity.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0076833</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7400-6243</orcidid><orcidid>https://orcid.org/0000-0002-6715-4827</orcidid><orcidid>https://orcid.org/0000-0001-6064-077X</orcidid><orcidid>https://orcid.org/0000-0002-1125-8328</orcidid><orcidid>https://orcid.org/0000-0002-9255-6457</orcidid><orcidid>https://orcid.org/0000-0002-7085-4162</orcidid><orcidid>https://orcid.org/0000-0003-2421-505X</orcidid><orcidid>https://orcid.org/0000000211258328</orcidid><orcidid>https://orcid.org/0000000174006243</orcidid><orcidid>https://orcid.org/0000000270854162</orcidid><orcidid>https://orcid.org/0000000292556457</orcidid><orcidid>https://orcid.org/0000000267154827</orcidid><orcidid>https://orcid.org/000000016064077X</orcidid><orcidid>https://orcid.org/000000032421505X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-06, Vol.131 (22)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2674099696
source AIP Journals Complete; Alma/SFX Local Collection
subjects Absorptivity
Applied physics
Efficiency
Gallium nitrides
Indium gallium nitrides
Luminous intensity
Modelling
Multi Quantum Wells
P-n junctions
Photovoltaic cells
Quantum confinement
Quantum efficiency
Red shift
Solar cells
Space applications
Spectral sensitivity
Temperature dependence
Thickness
Wireless power transmission
title Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A41%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20efficiency%20of%20InGaN%E2%80%93GaN%20multi-quantum%20well%20solar%20cells:%20Experimental%20characterization%20and%20modeling&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Caria,%20Alessandro&rft.date=2022-06-14&rft.volume=131&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0076833&rft_dat=%3Cproquest_osti_%3E2674099696%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674099696&rft_id=info:pmid/&rfr_iscdi=true