Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments
Cloud computing environments and Internet datacenters consist of a multitude of servers that process user requests. Performance and scalability can suffer greatly when the workload surges to levels that cause a system to become unstable (i.e., when the arrival rate of requests exceeds the system...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cloud computing 2022-04, Vol.10 (2), p.984-995 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 2 |
container_start_page | 984 |
container_title | IEEE transactions on cloud computing |
container_volume | 10 |
creator | Tadakamalla, Venkat Menasce, Daniel A. |
description | Cloud computing environments and Internet datacenters consist of a multitude of servers that process user requests. Performance and scalability can suffer greatly when the workload surges to levels that cause a system to become unstable (i.e., when the arrival rate of requests exceeds the system's capacity to process them). This article presents a detailed design and evaluation of an autonomic elasticity controller for surges of any shape. This controller uses an analytical model, derived by the authors, of a single-queue multiple-server system (G/G/c) subject to workload surges that cause the system to become unstable during finite time intervals. The controller is evaluated through extensive simulations and by using publicly available Google traces. The controller is further extended to take into account VM startup delays. The article also illustrates how fudge factors can be used to more aggressively react to surges at the expense of additional resources. Finally, our controller is compared with a hypothetical oracle controller that knows the exact shape of the surge when it starts to occur. |
doi_str_mv | 10.1109/TCC.2020.2992949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2674083582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9088303</ieee_id><sourcerecordid>2674083582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-d151d5e8b18d02efb411cf846e79a8ffaee13818adcd9012e689391d701c3a103</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKp3wUvA89ZM9qPJsSy1ChWRtngM6WZWU7dJze4W-u9NaRHnMjPM-84MDyF3wEYATD4uy3LEGWcjLiWXmbwgAw6FSMZQwOW_-prctu2GxRA5SJAD8jXpO-_81lZ02ui2s5XtDrT0rgu-obUP9LVvOpssMOwx0Pcee2zpypnYzNBhiMYPH74brw1d9OEzTq2jZeN7Q6dub4N3W3Rde0Ouat20eHvOQ7J6mi7L52T-NnspJ_Ok4qzoEgM5mBzFGoRhHOt1BlDVIitwLLWoa40IqQChTWUkA46FkKkEM2ZQpRpYOiQPp7274H_ir53a-D64eFLxYpwxkeaCRxU7qarg2zZgrXbBbnU4KGDqiFRFpOqIVJ2RRsv9yWIR8U8umRApS9Nfvktyug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674083582</pqid></control><display><type>article</type><title>Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Tadakamalla, Venkat ; Menasce, Daniel A.</creator><creatorcontrib>Tadakamalla, Venkat ; Menasce, Daniel A.</creatorcontrib><description>Cloud computing environments and Internet datacenters consist of a multitude of servers that process user requests. Performance and scalability can suffer greatly when the workload surges to levels that cause a system to become unstable (i.e., when the arrival rate of requests exceeds the system's capacity to process them). This article presents a detailed design and evaluation of an autonomic elasticity controller for surges of any shape. This controller uses an analytical model, derived by the authors, of a single-queue multiple-server system (G/G/c) subject to workload surges that cause the system to become unstable during finite time intervals. The controller is evaluated through extensive simulations and by using publicly available Google traces. The controller is further extended to take into account VM startup delays. The article also illustrates how fudge factors can be used to more aggressively react to surges at the expense of additional resources. Finally, our controller is compared with a hypothetical oracle controller that knows the exact shape of the surge when it starts to occur.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2020.2992949</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>analytic models ; Cloud computing ; Controllers ; Data centers ; Elasticity ; elasticity control ; G/G/c queue ; Queues ; Servers ; Shape ; Steady-state ; Surges ; Time factors ; Workload ; workload surges ; Workloads</subject><ispartof>IEEE transactions on cloud computing, 2022-04, Vol.10 (2), p.984-995</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c206t-d151d5e8b18d02efb411cf846e79a8ffaee13818adcd9012e689391d701c3a103</citedby><cites>FETCH-LOGICAL-c206t-d151d5e8b18d02efb411cf846e79a8ffaee13818adcd9012e689391d701c3a103</cites><orcidid>0000-0002-4085-6212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9088303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9088303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tadakamalla, Venkat</creatorcontrib><creatorcontrib>Menasce, Daniel A.</creatorcontrib><title>Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Cloud computing environments and Internet datacenters consist of a multitude of servers that process user requests. Performance and scalability can suffer greatly when the workload surges to levels that cause a system to become unstable (i.e., when the arrival rate of requests exceeds the system's capacity to process them). This article presents a detailed design and evaluation of an autonomic elasticity controller for surges of any shape. This controller uses an analytical model, derived by the authors, of a single-queue multiple-server system (G/G/c) subject to workload surges that cause the system to become unstable during finite time intervals. The controller is evaluated through extensive simulations and by using publicly available Google traces. The controller is further extended to take into account VM startup delays. The article also illustrates how fudge factors can be used to more aggressively react to surges at the expense of additional resources. Finally, our controller is compared with a hypothetical oracle controller that knows the exact shape of the surge when it starts to occur.</description><subject>analytic models</subject><subject>Cloud computing</subject><subject>Controllers</subject><subject>Data centers</subject><subject>Elasticity</subject><subject>elasticity control</subject><subject>G/G/c queue</subject><subject>Queues</subject><subject>Servers</subject><subject>Shape</subject><subject>Steady-state</subject><subject>Surges</subject><subject>Time factors</subject><subject>Workload</subject><subject>workload surges</subject><subject>Workloads</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKp3wUvA89ZM9qPJsSy1ChWRtngM6WZWU7dJze4W-u9NaRHnMjPM-84MDyF3wEYATD4uy3LEGWcjLiWXmbwgAw6FSMZQwOW_-prctu2GxRA5SJAD8jXpO-_81lZ02ui2s5XtDrT0rgu-obUP9LVvOpssMOwx0Pcee2zpypnYzNBhiMYPH74brw1d9OEzTq2jZeN7Q6dub4N3W3Rde0Ouat20eHvOQ7J6mi7L52T-NnspJ_Ok4qzoEgM5mBzFGoRhHOt1BlDVIitwLLWoa40IqQChTWUkA46FkKkEM2ZQpRpYOiQPp7274H_ir53a-D64eFLxYpwxkeaCRxU7qarg2zZgrXbBbnU4KGDqiFRFpOqIVJ2RRsv9yWIR8U8umRApS9Nfvktyug</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Tadakamalla, Venkat</creator><creator>Menasce, Daniel A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4085-6212</orcidid></search><sort><creationdate>202204</creationdate><title>Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments</title><author>Tadakamalla, Venkat ; Menasce, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-d151d5e8b18d02efb411cf846e79a8ffaee13818adcd9012e689391d701c3a103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>analytic models</topic><topic>Cloud computing</topic><topic>Controllers</topic><topic>Data centers</topic><topic>Elasticity</topic><topic>elasticity control</topic><topic>G/G/c queue</topic><topic>Queues</topic><topic>Servers</topic><topic>Shape</topic><topic>Steady-state</topic><topic>Surges</topic><topic>Time factors</topic><topic>Workload</topic><topic>workload surges</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadakamalla, Venkat</creatorcontrib><creatorcontrib>Menasce, Daniel A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tadakamalla, Venkat</au><au>Menasce, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2022-04</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>984</spage><epage>995</epage><pages>984-995</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Cloud computing environments and Internet datacenters consist of a multitude of servers that process user requests. Performance and scalability can suffer greatly when the workload surges to levels that cause a system to become unstable (i.e., when the arrival rate of requests exceeds the system's capacity to process them). This article presents a detailed design and evaluation of an autonomic elasticity controller for surges of any shape. This controller uses an analytical model, derived by the authors, of a single-queue multiple-server system (G/G/c) subject to workload surges that cause the system to become unstable during finite time intervals. The controller is evaluated through extensive simulations and by using publicly available Google traces. The controller is further extended to take into account VM startup delays. The article also illustrates how fudge factors can be used to more aggressively react to surges at the expense of additional resources. Finally, our controller is compared with a hypothetical oracle controller that knows the exact shape of the surge when it starts to occur.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCC.2020.2992949</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4085-6212</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-7161 |
ispartof | IEEE transactions on cloud computing, 2022-04, Vol.10 (2), p.984-995 |
issn | 2168-7161 2168-7161 2372-0018 |
language | eng |
recordid | cdi_proquest_journals_2674083582 |
source | IEEE Electronic Library (IEL) |
subjects | analytic models Cloud computing Controllers Data centers Elasticity elasticity control G/G/c queue Queues Servers Shape Steady-state Surges Time factors Workload workload surges Workloads |
title | Autonomic Elasticity Control for Multi-Server Queues Under Generic Workload Surges in Cloud Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomic%20Elasticity%20Control%20for%20Multi-Server%20Queues%20Under%20Generic%20Workload%20Surges%20in%20Cloud%20Environments&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Tadakamalla,%20Venkat&rft.date=2022-04&rft.volume=10&rft.issue=2&rft.spage=984&rft.epage=995&rft.pages=984-995&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2020.2992949&rft_dat=%3Cproquest_RIE%3E2674083582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674083582&rft_id=info:pmid/&rft_ieee_id=9088303&rfr_iscdi=true |