Monochromatic Vertex-Disconnection Colorings of Graphs
Let G be a vertex-colored connected graph. A subset U of the vertex set of G is called monochromatic , if all vertices of U are assigned the same color. The vertex-colored graph G is called monochromatic vertex-disconnected if for any two distinct vertices x and y , there is a monochromatic vertex-s...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022-07, Vol.45 (4), p.1621-1640 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1640 |
---|---|
container_issue | 4 |
container_start_page | 1621 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 45 |
creator | Gao, Yanhong Li, Xueliang |
description | Let
G
be a vertex-colored connected graph. A subset
U
of the vertex set of
G
is called
monochromatic
, if all vertices of
U
are assigned the same color. The vertex-colored graph
G
is called
monochromatic vertex-disconnected
if for any two distinct vertices
x
and
y
, there is a monochromatic vertex-subset
S
of
G
such that
x
and
y
belong to different components of
G
-
S
if
x
and
y
are nonadjacent, and if
x
and
y
are adjacent, then
x
or
y
has the same color as
S
and
x
and
y
belong to distinct components of
(
G
-
x
y
)
-
S
. The
monochromatic vertex-disconnection number
of a connected graph
G
, denoted by
mvd
(
G
)
, is defined as the maximum number of colors that are allowed to make
G
monochromatic vertex-disconnected. The concept is inspired by the concepts of rainbow vertex-disconnection number
rvd
(
G
)
and monochromatic disconnection number
md
(
G
)
. In this paper, we present some sufficient conditions for a connected graph
G
to have
mvd
(
G
)
=
1
and show that almost all graphs have monochromatic vertex-disconnection number 1. Moreover, we present Nordhaus–Gaddum-type results for the new parameter
mvd
(
G
)
. At last, we investigate the monochromatic vertex-disconnection numbers for four graph products. |
doi_str_mv | 10.1007/s40840-022-01284-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674023507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674023507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-d71b47b098eaac7b561961c1c3e43fc2aa7154cb58bef2eb293a1df0ee798a253</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsNR-AU8Bz6uzk_2THKVqK1S8qNdls53YlDYbd1PQb29qBG_OZWB47w3vx9ilgGsBYG6ShEICB0QOAgvJ8YRNUBTAJYI-ZZPhqrk2oM7ZLKUtDKM0ahQTpp9CG_wmhr3rG5-9Uezpk981yYe2Jd83oc3mYRdi076nLNTZIrpuky7YWe12iWa_e8peH-5f5ku-el48zm9X3KMse742opKmgrIg57yplBalFl74nGRee3TOCCV9pYqKaqQKy9yJdQ1EpiwcqnzKrsbcLoaPA6XebsMhtsNLi9pIwFyBGVQ4qnwMKUWqbRebvYtfVoA9IrIjIjsgsj-ILA6mfDSl7liO4l_0P65vZvhosA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674023507</pqid></control><display><type>article</type><title>Monochromatic Vertex-Disconnection Colorings of Graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Yanhong ; Li, Xueliang</creator><creatorcontrib>Gao, Yanhong ; Li, Xueliang</creatorcontrib><description>Let
G
be a vertex-colored connected graph. A subset
U
of the vertex set of
G
is called
monochromatic
, if all vertices of
U
are assigned the same color. The vertex-colored graph
G
is called
monochromatic vertex-disconnected
if for any two distinct vertices
x
and
y
, there is a monochromatic vertex-subset
S
of
G
such that
x
and
y
belong to different components of
G
-
S
if
x
and
y
are nonadjacent, and if
x
and
y
are adjacent, then
x
or
y
has the same color as
S
and
x
and
y
belong to distinct components of
(
G
-
x
y
)
-
S
. The
monochromatic vertex-disconnection number
of a connected graph
G
, denoted by
mvd
(
G
)
, is defined as the maximum number of colors that are allowed to make
G
monochromatic vertex-disconnected. The concept is inspired by the concepts of rainbow vertex-disconnection number
rvd
(
G
)
and monochromatic disconnection number
md
(
G
)
. In this paper, we present some sufficient conditions for a connected graph
G
to have
mvd
(
G
)
=
1
and show that almost all graphs have monochromatic vertex-disconnection number 1. Moreover, we present Nordhaus–Gaddum-type results for the new parameter
mvd
(
G
)
. At last, we investigate the monochromatic vertex-disconnection numbers for four graph products.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-022-01284-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Color ; Graph theory ; Graphs ; Mathematics ; Mathematics and Statistics ; Vertex sets</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2022-07, Vol.45 (4), p.1621-1640</ispartof><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022</rights><rights>The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-d71b47b098eaac7b561961c1c3e43fc2aa7154cb58bef2eb293a1df0ee798a253</citedby><cites>FETCH-LOGICAL-c249t-d71b47b098eaac7b561961c1c3e43fc2aa7154cb58bef2eb293a1df0ee798a253</cites><orcidid>0000-0002-8335-9873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-022-01284-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-022-01284-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Yanhong</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><title>Monochromatic Vertex-Disconnection Colorings of Graphs</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>Let
G
be a vertex-colored connected graph. A subset
U
of the vertex set of
G
is called
monochromatic
, if all vertices of
U
are assigned the same color. The vertex-colored graph
G
is called
monochromatic vertex-disconnected
if for any two distinct vertices
x
and
y
, there is a monochromatic vertex-subset
S
of
G
such that
x
and
y
belong to different components of
G
-
S
if
x
and
y
are nonadjacent, and if
x
and
y
are adjacent, then
x
or
y
has the same color as
S
and
x
and
y
belong to distinct components of
(
G
-
x
y
)
-
S
. The
monochromatic vertex-disconnection number
of a connected graph
G
, denoted by
mvd
(
G
)
, is defined as the maximum number of colors that are allowed to make
G
monochromatic vertex-disconnected. The concept is inspired by the concepts of rainbow vertex-disconnection number
rvd
(
G
)
and monochromatic disconnection number
md
(
G
)
. In this paper, we present some sufficient conditions for a connected graph
G
to have
mvd
(
G
)
=
1
and show that almost all graphs have monochromatic vertex-disconnection number 1. Moreover, we present Nordhaus–Gaddum-type results for the new parameter
mvd
(
G
)
. At last, we investigate the monochromatic vertex-disconnection numbers for four graph products.</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Color</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Vertex sets</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsNR-AU8Bz6uzk_2THKVqK1S8qNdls53YlDYbd1PQb29qBG_OZWB47w3vx9ilgGsBYG6ShEICB0QOAgvJ8YRNUBTAJYI-ZZPhqrk2oM7ZLKUtDKM0ahQTpp9CG_wmhr3rG5-9Uezpk981yYe2Jd83oc3mYRdi076nLNTZIrpuky7YWe12iWa_e8peH-5f5ku-el48zm9X3KMse742opKmgrIg57yplBalFl74nGRee3TOCCV9pYqKaqQKy9yJdQ1EpiwcqnzKrsbcLoaPA6XebsMhtsNLi9pIwFyBGVQ4qnwMKUWqbRebvYtfVoA9IrIjIjsgsj-ILA6mfDSl7liO4l_0P65vZvhosA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gao, Yanhong</creator><creator>Li, Xueliang</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8335-9873</orcidid></search><sort><creationdate>20220701</creationdate><title>Monochromatic Vertex-Disconnection Colorings of Graphs</title><author>Gao, Yanhong ; Li, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-d71b47b098eaac7b561961c1c3e43fc2aa7154cb58bef2eb293a1df0ee798a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Color</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Vertex sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yanhong</creatorcontrib><creatorcontrib>Li, Xueliang</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yanhong</au><au>Li, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monochromatic Vertex-Disconnection Colorings of Graphs</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>45</volume><issue>4</issue><spage>1621</spage><epage>1640</epage><pages>1621-1640</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>Let
G
be a vertex-colored connected graph. A subset
U
of the vertex set of
G
is called
monochromatic
, if all vertices of
U
are assigned the same color. The vertex-colored graph
G
is called
monochromatic vertex-disconnected
if for any two distinct vertices
x
and
y
, there is a monochromatic vertex-subset
S
of
G
such that
x
and
y
belong to different components of
G
-
S
if
x
and
y
are nonadjacent, and if
x
and
y
are adjacent, then
x
or
y
has the same color as
S
and
x
and
y
belong to distinct components of
(
G
-
x
y
)
-
S
. The
monochromatic vertex-disconnection number
of a connected graph
G
, denoted by
mvd
(
G
)
, is defined as the maximum number of colors that are allowed to make
G
monochromatic vertex-disconnected. The concept is inspired by the concepts of rainbow vertex-disconnection number
rvd
(
G
)
and monochromatic disconnection number
md
(
G
)
. In this paper, we present some sufficient conditions for a connected graph
G
to have
mvd
(
G
)
=
1
and show that almost all graphs have monochromatic vertex-disconnection number 1. Moreover, we present Nordhaus–Gaddum-type results for the new parameter
mvd
(
G
)
. At last, we investigate the monochromatic vertex-disconnection numbers for four graph products.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40840-022-01284-2</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8335-9873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2022-07, Vol.45 (4), p.1621-1640 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2674023507 |
source | SpringerLink Journals - AutoHoldings |
subjects | Apexes Applications of Mathematics Color Graph theory Graphs Mathematics Mathematics and Statistics Vertex sets |
title | Monochromatic Vertex-Disconnection Colorings of Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monochromatic%20Vertex-Disconnection%20Colorings%20of%20Graphs&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Gao,%20Yanhong&rft.date=2022-07-01&rft.volume=45&rft.issue=4&rft.spage=1621&rft.epage=1640&rft.pages=1621-1640&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-022-01284-2&rft_dat=%3Cproquest_cross%3E2674023507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674023507&rft_id=info:pmid/&rfr_iscdi=true |