Optimized support vector neural network and contourlet transform for image steganography
Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sens...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2022, Vol.15 (2), p.1295-1311 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1311 |
---|---|
container_issue | 2 |
container_start_page | 1295 |
container_title | Evolutionary intelligence |
container_volume | 15 |
creator | Reshma, V. K. Vinod Kumar, R. S. Shahi, D. Shyjith, M. B. |
description | Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively. |
doi_str_mv | 10.1007/s12065-020-00387-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674023498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674023498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8V18-mjRHWfyChb0oeAtpm9auu01NUmX99Wat6M3Lm_dgZt4wCJ0TuCQA8ioQCiLPgEIGwAqZFQdoRgrBs1wRefi7gzpGJyGsAQQFyWfoeTXEbtt92hqHcRicj_jdVtF53NvRm02C-OH8KzZ9jSvXRzf6jY04etOHxvktTgN3W9NaHKJtTe9ab4aX3Sk6aswm2LMfnKOn25vHxX22XN09LK6XWcWIipmSJYecQFXbomQ2B8alZDynXAgFRhpOJUlnoYq8pqXgypaCSkksV2XVUDZHF5Pv4N3baEPU6xSxTy81FZIDZVwViUUnVuVdCN42evAptN9pAnrfoJ4a1KlB_d2g3ovYJAqJ3LfW_1n_o_oCAvJz7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674023498</pqid></control><display><type>article</type><title>Optimized support vector neural network and contourlet transform for image steganography</title><source>SpringerNature Journals</source><creator>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</creator><creatorcontrib>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</creatorcontrib><description>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-020-00387-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classifiers ; Control ; Correlation coefficients ; Embedding ; Engineering ; Experimentation ; Image acquisition ; Mathematical and Computational Engineering ; Mechatronics ; Medical imaging ; Neural networks ; Noise levels ; Performance measurement ; Pixels ; Robotics ; Special Issue ; Statistical Physics and Dynamical Systems ; Steganography</subject><ispartof>Evolutionary intelligence, 2022, Vol.15 (2), p.1295-1311</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</citedby><cites>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-020-00387-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-020-00387-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Reshma, V. K.</creatorcontrib><creatorcontrib>Vinod Kumar, R. S.</creatorcontrib><creatorcontrib>Shahi, D.</creatorcontrib><creatorcontrib>Shyjith, M. B.</creatorcontrib><title>Optimized support vector neural network and contourlet transform for image steganography</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classifiers</subject><subject>Control</subject><subject>Correlation coefficients</subject><subject>Embedding</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Image acquisition</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Performance measurement</subject><subject>Pixels</subject><subject>Robotics</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Steganography</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8V18-mjRHWfyChb0oeAtpm9auu01NUmX99Wat6M3Lm_dgZt4wCJ0TuCQA8ioQCiLPgEIGwAqZFQdoRgrBs1wRefi7gzpGJyGsAQQFyWfoeTXEbtt92hqHcRicj_jdVtF53NvRm02C-OH8KzZ9jSvXRzf6jY04etOHxvktTgN3W9NaHKJtTe9ab4aX3Sk6aswm2LMfnKOn25vHxX22XN09LK6XWcWIipmSJYecQFXbomQ2B8alZDynXAgFRhpOJUlnoYq8pqXgypaCSkksV2XVUDZHF5Pv4N3baEPU6xSxTy81FZIDZVwViUUnVuVdCN42evAptN9pAnrfoJ4a1KlB_d2g3ovYJAqJ3LfW_1n_o_oCAvJz7Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Reshma, V. K.</creator><creator>Vinod Kumar, R. S.</creator><creator>Shahi, D.</creator><creator>Shyjith, M. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Optimized support vector neural network and contourlet transform for image steganography</title><author>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classifiers</topic><topic>Control</topic><topic>Correlation coefficients</topic><topic>Embedding</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Image acquisition</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Performance measurement</topic><topic>Pixels</topic><topic>Robotics</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshma, V. K.</creatorcontrib><creatorcontrib>Vinod Kumar, R. S.</creatorcontrib><creatorcontrib>Shahi, D.</creatorcontrib><creatorcontrib>Shyjith, M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshma, V. K.</au><au>Vinod Kumar, R. S.</au><au>Shahi, D.</au><au>Shyjith, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized support vector neural network and contourlet transform for image steganography</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>1295</spage><epage>1311</epage><pages>1295-1311</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-020-00387-8</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2022, Vol.15 (2), p.1295-1311 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2674023498 |
source | SpringerNature Journals |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Classifiers Control Correlation coefficients Embedding Engineering Experimentation Image acquisition Mathematical and Computational Engineering Mechatronics Medical imaging Neural networks Noise levels Performance measurement Pixels Robotics Special Issue Statistical Physics and Dynamical Systems Steganography |
title | Optimized support vector neural network and contourlet transform for image steganography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20support%20vector%20neural%20network%20and%20contourlet%20transform%20for%20image%20steganography&rft.jtitle=Evolutionary%20intelligence&rft.au=Reshma,%20V.%20K.&rft.date=2022&rft.volume=15&rft.issue=2&rft.spage=1295&rft.epage=1311&rft.pages=1295-1311&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-020-00387-8&rft_dat=%3Cproquest_cross%3E2674023498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674023498&rft_id=info:pmid/&rfr_iscdi=true |