Optimized support vector neural network and contourlet transform for image steganography

Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2022, Vol.15 (2), p.1295-1311
Hauptverfasser: Reshma, V. K., Vinod Kumar, R. S., Shahi, D., Shyjith, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1311
container_issue 2
container_start_page 1295
container_title Evolutionary intelligence
container_volume 15
creator Reshma, V. K.
Vinod Kumar, R. S.
Shahi, D.
Shyjith, M. B.
description Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.
doi_str_mv 10.1007/s12065-020-00387-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674023498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674023498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8V18-mjRHWfyChb0oeAtpm9auu01NUmX99Wat6M3Lm_dgZt4wCJ0TuCQA8ioQCiLPgEIGwAqZFQdoRgrBs1wRefi7gzpGJyGsAQQFyWfoeTXEbtt92hqHcRicj_jdVtF53NvRm02C-OH8KzZ9jSvXRzf6jY04etOHxvktTgN3W9NaHKJtTe9ab4aX3Sk6aswm2LMfnKOn25vHxX22XN09LK6XWcWIipmSJYecQFXbomQ2B8alZDynXAgFRhpOJUlnoYq8pqXgypaCSkksV2XVUDZHF5Pv4N3baEPU6xSxTy81FZIDZVwViUUnVuVdCN42evAptN9pAnrfoJ4a1KlB_d2g3ovYJAqJ3LfW_1n_o_oCAvJz7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674023498</pqid></control><display><type>article</type><title>Optimized support vector neural network and contourlet transform for image steganography</title><source>SpringerNature Journals</source><creator>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</creator><creatorcontrib>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</creatorcontrib><description>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-020-00387-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classifiers ; Control ; Correlation coefficients ; Embedding ; Engineering ; Experimentation ; Image acquisition ; Mathematical and Computational Engineering ; Mechatronics ; Medical imaging ; Neural networks ; Noise levels ; Performance measurement ; Pixels ; Robotics ; Special Issue ; Statistical Physics and Dynamical Systems ; Steganography</subject><ispartof>Evolutionary intelligence, 2022, Vol.15 (2), p.1295-1311</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</citedby><cites>FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-020-00387-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-020-00387-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Reshma, V. K.</creatorcontrib><creatorcontrib>Vinod Kumar, R. S.</creatorcontrib><creatorcontrib>Shahi, D.</creatorcontrib><creatorcontrib>Shyjith, M. B.</creatorcontrib><title>Optimized support vector neural network and contourlet transform for image steganography</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classifiers</subject><subject>Control</subject><subject>Correlation coefficients</subject><subject>Embedding</subject><subject>Engineering</subject><subject>Experimentation</subject><subject>Image acquisition</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Performance measurement</subject><subject>Pixels</subject><subject>Robotics</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Steganography</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPAU8V18-mjRHWfyChb0oeAtpm9auu01NUmX99Wat6M3Lm_dgZt4wCJ0TuCQA8ioQCiLPgEIGwAqZFQdoRgrBs1wRefi7gzpGJyGsAQQFyWfoeTXEbtt92hqHcRicj_jdVtF53NvRm02C-OH8KzZ9jSvXRzf6jY04etOHxvktTgN3W9NaHKJtTe9ab4aX3Sk6aswm2LMfnKOn25vHxX22XN09LK6XWcWIipmSJYecQFXbomQ2B8alZDynXAgFRhpOJUlnoYq8pqXgypaCSkksV2XVUDZHF5Pv4N3baEPU6xSxTy81FZIDZVwViUUnVuVdCN42evAptN9pAnrfoJ4a1KlB_d2g3ovYJAqJ3LfW_1n_o_oCAvJz7Q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Reshma, V. K.</creator><creator>Vinod Kumar, R. S.</creator><creator>Shahi, D.</creator><creator>Shyjith, M. B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Optimized support vector neural network and contourlet transform for image steganography</title><author>Reshma, V. K. ; Vinod Kumar, R. S. ; Shahi, D. ; Shyjith, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-97b40510cde8b3e503477345246690a7a42714528985d2b649eb62771e49bcf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classifiers</topic><topic>Control</topic><topic>Correlation coefficients</topic><topic>Embedding</topic><topic>Engineering</topic><topic>Experimentation</topic><topic>Image acquisition</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Performance measurement</topic><topic>Pixels</topic><topic>Robotics</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reshma, V. K.</creatorcontrib><creatorcontrib>Vinod Kumar, R. S.</creatorcontrib><creatorcontrib>Shahi, D.</creatorcontrib><creatorcontrib>Shyjith, M. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reshma, V. K.</au><au>Vinod Kumar, R. S.</au><au>Shahi, D.</au><au>Shyjith, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized support vector neural network and contourlet transform for image steganography</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>1295</spage><epage>1311</epage><pages>1295-1311</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Image steganography is one of the promising and popular techniques used to secure the sensitive information. Even though there are numerous steganography techniques for hiding the sensitive information, there are still a lot of challenges to the researchers regarding the effective hiding of the sensitive data. Thus, an effective pixel prediction-based image steganography method is proposed, which uses the error dependent SVNN classifier for effective pixel identification. The suitable pixels are effectively identified from the medical image using the SVNN classifier using the pixel features, such as edge information, pixel coverage, texture, wavelet energy, Gabor, and scattering features. Here, the SVNN is trained optimally using the GA or MS Algorithm based on the minimal error. Then, the CT is applied to the predicted pixel for embedding. Finally, the inverse CT is employed to extract the secret message from the embedded image. The experimentation of the proposed image steganography is performed using the BRATS database depending on the performance metrics, PSNR, SSIM, and correlation coefficient, which acquired 89.3253 dB, 1, and 1, for the image without noise and 48.5778 dB, 0.6123, and 0.9933, for the image affected by noise, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-020-00387-8</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2022, Vol.15 (2), p.1295-1311
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2674023498
source SpringerNature Journals
subjects Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Classifiers
Control
Correlation coefficients
Embedding
Engineering
Experimentation
Image acquisition
Mathematical and Computational Engineering
Mechatronics
Medical imaging
Neural networks
Noise levels
Performance measurement
Pixels
Robotics
Special Issue
Statistical Physics and Dynamical Systems
Steganography
title Optimized support vector neural network and contourlet transform for image steganography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20support%20vector%20neural%20network%20and%20contourlet%20transform%20for%20image%20steganography&rft.jtitle=Evolutionary%20intelligence&rft.au=Reshma,%20V.%20K.&rft.date=2022&rft.volume=15&rft.issue=2&rft.spage=1295&rft.epage=1311&rft.pages=1295-1311&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-020-00387-8&rft_dat=%3Cproquest_cross%3E2674023498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674023498&rft_id=info:pmid/&rfr_iscdi=true