A new big data approach for topic classification and sentiment analysis of Twitter data

Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary intelligence 2022-06, Vol.15 (2), p.877-887
Hauptverfasser: Rodrigues, Anisha P., Chiplunkar, Niranjan N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 887
container_issue 2
container_start_page 877
container_title Evolutionary intelligence
container_volume 15
creator Rodrigues, Anisha P.
Chiplunkar, Niranjan N.
description Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.
doi_str_mv 10.1007/s12065-019-00236-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674023460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674023460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUlmlqWoFQpuKi5DJpPUlHYyJimlb2_siO7c3B8453Dvh9AtgXsCIB4iocCrAkhTAFDGC3aGJqTmZVE1RJz_ztBcoqsYNwCcgign6H2Ge3PArVvjTiWF1TAEr_QHtj7g5Aensd6qGJ11WiXne6z6DkfTJ7fLJW9qe4wuYm_x6uBSMuEUdI0urNpGc_PTp-jt6XE1XxTL1-eX-WxZaEaaVBgCnHeqNS0xzDJd1oR2rG4rLagVHauUaGtoqrquCLea5tfarmqsVYxSbhSborsxN5_9uTcxyY3fh3xUlJSLMrMoOWQVHVU6-BiDsXIIbqfCURKQ3wDlCFBmgPIEULJsYqMpZnG_NuEv-h_XF4_Jc2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674023460</pqid></control><display><type>article</type><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><source>SpringerLink (Online service)</source><creator>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</creator><creatorcontrib>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</creatorcontrib><description>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-019-00236-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bayesian analysis ; Big Data ; Bioinformatics ; Classification ; Classifiers ; Control ; Data mining ; Engineering ; Mathematical and Computational Engineering ; Mechatronics ; Robotics ; Sentiment analysis ; Social networks ; Special Issue ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2022-06, Vol.15 (2), p.877-887</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</citedby><cites>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-019-00236-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-019-00236-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rodrigues, Anisha P.</creatorcontrib><creatorcontrib>Chiplunkar, Niranjan N.</creatorcontrib><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Control</subject><subject>Data mining</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUlmlqWoFQpuKi5DJpPUlHYyJimlb2_siO7c3B8453Dvh9AtgXsCIB4iocCrAkhTAFDGC3aGJqTmZVE1RJz_ztBcoqsYNwCcgign6H2Ge3PArVvjTiWF1TAEr_QHtj7g5Aensd6qGJ11WiXne6z6DkfTJ7fLJW9qe4wuYm_x6uBSMuEUdI0urNpGc_PTp-jt6XE1XxTL1-eX-WxZaEaaVBgCnHeqNS0xzDJd1oR2rG4rLagVHauUaGtoqrquCLea5tfarmqsVYxSbhSborsxN5_9uTcxyY3fh3xUlJSLMrMoOWQVHVU6-BiDsXIIbqfCURKQ3wDlCFBmgPIEULJsYqMpZnG_NuEv-h_XF4_Jc2Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rodrigues, Anisha P.</creator><creator>Chiplunkar, Niranjan N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><author>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Control</topic><topic>Data mining</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Anisha P.</creatorcontrib><creatorcontrib>Chiplunkar, Niranjan N.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Anisha P.</au><au>Chiplunkar, Niranjan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new big data approach for topic classification and sentiment analysis of Twitter data</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>877</spage><epage>887</epage><pages>877-887</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-019-00236-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2022-06, Vol.15 (2), p.877-887
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2674023460
source SpringerLink (Online service)
subjects Applications of Mathematics
Artificial Intelligence
Bayesian analysis
Big Data
Bioinformatics
Classification
Classifiers
Control
Data mining
Engineering
Mathematical and Computational Engineering
Mechatronics
Robotics
Sentiment analysis
Social networks
Special Issue
Statistical Physics and Dynamical Systems
title A new big data approach for topic classification and sentiment analysis of Twitter data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20big%20data%20approach%20for%20topic%20classification%20and%20sentiment%20analysis%20of%20Twitter%20data&rft.jtitle=Evolutionary%20intelligence&rft.au=Rodrigues,%20Anisha%20P.&rft.date=2022-06-01&rft.volume=15&rft.issue=2&rft.spage=877&rft.epage=887&rft.pages=877-887&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-019-00236-3&rft_dat=%3Cproquest_cross%3E2674023460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674023460&rft_id=info:pmid/&rfr_iscdi=true