A new big data approach for topic classification and sentiment analysis of Twitter data
Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate ind...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2022-06, Vol.15 (2), p.877-887 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 887 |
---|---|
container_issue | 2 |
container_start_page | 877 |
container_title | Evolutionary intelligence |
container_volume | 15 |
creator | Rodrigues, Anisha P. Chiplunkar, Niranjan N. |
description | Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets. |
doi_str_mv | 10.1007/s12065-019-00236-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2674023460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674023460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUlmlqWoFQpuKi5DJpPUlHYyJimlb2_siO7c3B8453Dvh9AtgXsCIB4iocCrAkhTAFDGC3aGJqTmZVE1RJz_ztBcoqsYNwCcgign6H2Ge3PArVvjTiWF1TAEr_QHtj7g5Aensd6qGJ11WiXne6z6DkfTJ7fLJW9qe4wuYm_x6uBSMuEUdI0urNpGc_PTp-jt6XE1XxTL1-eX-WxZaEaaVBgCnHeqNS0xzDJd1oR2rG4rLagVHauUaGtoqrquCLea5tfarmqsVYxSbhSborsxN5_9uTcxyY3fh3xUlJSLMrMoOWQVHVU6-BiDsXIIbqfCURKQ3wDlCFBmgPIEULJsYqMpZnG_NuEv-h_XF4_Jc2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674023460</pqid></control><display><type>article</type><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><source>SpringerLink (Online service)</source><creator>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</creator><creatorcontrib>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</creatorcontrib><description>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-019-00236-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bayesian analysis ; Big Data ; Bioinformatics ; Classification ; Classifiers ; Control ; Data mining ; Engineering ; Mathematical and Computational Engineering ; Mechatronics ; Robotics ; Sentiment analysis ; Social networks ; Special Issue ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2022-06, Vol.15 (2), p.877-887</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</citedby><cites>FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-019-00236-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-019-00236-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Rodrigues, Anisha P.</creatorcontrib><creatorcontrib>Chiplunkar, Niranjan N.</creatorcontrib><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Control</subject><subject>Data mining</subject><subject>Engineering</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Special Issue</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgevQmmUlmlqWoFQpuKi5DJpPUlHYyJimlb2_siO7c3B8453Dvh9AtgXsCIB4iocCrAkhTAFDGC3aGJqTmZVE1RJz_ztBcoqsYNwCcgign6H2Ge3PArVvjTiWF1TAEr_QHtj7g5Aensd6qGJ11WiXne6z6DkfTJ7fLJW9qe4wuYm_x6uBSMuEUdI0urNpGc_PTp-jt6XE1XxTL1-eX-WxZaEaaVBgCnHeqNS0xzDJd1oR2rG4rLagVHauUaGtoqrquCLea5tfarmqsVYxSbhSborsxN5_9uTcxyY3fh3xUlJSLMrMoOWQVHVU6-BiDsXIIbqfCURKQ3wDlCFBmgPIEULJsYqMpZnG_NuEv-h_XF4_Jc2Q</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rodrigues, Anisha P.</creator><creator>Chiplunkar, Niranjan N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>A new big data approach for topic classification and sentiment analysis of Twitter data</title><author>Rodrigues, Anisha P. ; Chiplunkar, Niranjan N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e1066dabeb1e3f3c4812d38b5c72f7d35a7b809588516fc2236bd59ffa3226ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Control</topic><topic>Data mining</topic><topic>Engineering</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Special Issue</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Anisha P.</creatorcontrib><creatorcontrib>Chiplunkar, Niranjan N.</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Anisha P.</au><au>Chiplunkar, Niranjan N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new big data approach for topic classification and sentiment analysis of Twitter data</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>877</spage><epage>887</epage><pages>877-887</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Twitter is a major micro-blogging service, with millions of active users. These users use Twitter to post status messages called tweets and share their opinions using hash tags on various events. Hence, Twitter is considered a major real time streaming source and one of an effective and accurate indicator of opinions. The amount of data generated by Twitter is huge and it is difficult to scan entire data manually. This paper proposes a Hybrid Lexicon-Naive Bayesian Classifier (HL-NBC) method for sentimental analysis. In addition to that, Sentiment analysis engine is preceded by topic classification, which classifies tweets into different categories and filters irrelevant tweets. The proposed method is compared with Lexicon, Naïve Bayesian classifier for uni-gram and bi-gram features. Out of the different approaches, the proposed HL-NBC method does sentiment classification in an improved way and gives accuracy of 82%, which is comparatively better than other methods. Also, the sentiment analysis is performed in a shorter time compared to traditional methods and achieves 93% improvement in processing time for larger datasets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-019-00236-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2022-06, Vol.15 (2), p.877-887 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_2674023460 |
source | SpringerLink (Online service) |
subjects | Applications of Mathematics Artificial Intelligence Bayesian analysis Big Data Bioinformatics Classification Classifiers Control Data mining Engineering Mathematical and Computational Engineering Mechatronics Robotics Sentiment analysis Social networks Special Issue Statistical Physics and Dynamical Systems |
title | A new big data approach for topic classification and sentiment analysis of Twitter data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20big%20data%20approach%20for%20topic%20classification%20and%20sentiment%20analysis%20of%20Twitter%20data&rft.jtitle=Evolutionary%20intelligence&rft.au=Rodrigues,%20Anisha%20P.&rft.date=2022-06-01&rft.volume=15&rft.issue=2&rft.spage=877&rft.epage=887&rft.pages=877-887&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-019-00236-3&rft_dat=%3Cproquest_cross%3E2674023460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674023460&rft_id=info:pmid/&rfr_iscdi=true |