Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors

Supercapacitors, which can be charged/discharged rapidly, play important roles in a sustainable society. Thick electrodes can reduce the ratio of inactive components in the overall cell while simultaneously improving energy and power densities. However, thick electrodes induce longer ion diffusion p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (24), p.n/a
Hauptverfasser: Katsuyama, Yuto, Haba, Nagihiro, Kobayashi, Hiroaki, Iwase, Kazuyuki, Kudo, Akira, Honma, Itaru, Kaner, Richard B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 32
creator Katsuyama, Yuto
Haba, Nagihiro
Kobayashi, Hiroaki
Iwase, Kazuyuki
Kudo, Akira
Honma, Itaru
Kaner, Richard B.
description Supercapacitors, which can be charged/discharged rapidly, play important roles in a sustainable society. Thick electrodes can reduce the ratio of inactive components in the overall cell while simultaneously improving energy and power densities. However, thick electrodes induce longer ion diffusion pathways, and capacitance drops dramatically after a certain thickness. To overcome this, precisely designed macro‐ and nano‐porous 3D‐hierarchical carbon lattices, where ions can diffuse freely inside the electrode, are prepared by combining an inexpensive stereolithography‐type 3D printer, whose resolution is 50 µm, with a simple CO2 activation process. The activated 3D carbon lattice with a 66% burn‐off ratio (3D‐CL‐A66%) has ordered macropores (≈150 µm) and uniform nanopores (2–3 nm), exhibiting a maximum areal capacitance of 5251 mF cm–2 at 3 mA cm–2. Furthermore, manganese oxide is electrochemically deposited on 3D‐CL‐A16% for 8 min (3D‐CL‐A16%‐MnO2‐8 min), increasing the areal capacitance by 2.5‐times. Finally, an all‐3D‐printed asymmetric 1.8 V supercapacitor is prepared by combining 3D‐CL‐A16%‐MnO2‐8 min and 3D‐CL‐A66% as the positive and negative electrodes, respectively, demonstrating a maximum energy density of 0.808 mWh cm–2 at a power density of 2.48 mW cm–2. The achieved values are one of the highest areal energy and power densities reported so far. A 3D‐hierarchical carbon lattice with ordered macropores (≈150 µm) and uniform nanopores (2–3 nm) for supercapacitor electrodes is successfully prepared using an inexpensive 3D printer and a simple gas activation process. The 3D‐ordered macropores facilitate ion transport inside the thick electrodes. The achieved areal energy and power densities are among the highest values reported to date.
doi_str_mv 10.1002/adfm.202201544
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673980428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673980428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-9d10563fc4550ffa109ce19a64e8e52f97343eebc36eaf3127cf0e91a33bd4563</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFa3rgOup-Y2t2VpqxVaFVRwF04ziU2ZTqbJFO3OR_AZfRJTRurSVX7C951z-KPokuABwZheQ6nXA4opxSTh_CjqkZSkMcM0Pz5k8noanXm_wphkGeO9aDMH6ez35xeCukT3UO_zo3V26xEbhzw1yoGTSyOhQiNwC1ujGbStkcojbR2afLQOrCtNDc5UOzQ1b8sANiBNC7VU6GnbKCe7D-v8eXSiofLq4vftRy83k-fRNJ493N6NhrNYspzxuCgJTlKmJU8SrDUQXEhFCki5ylVCdRHOZ0otJEsVaEZoJjVWBQHGFiUPZj-66uY2zm62yrdiZbeuDisFTTNW5JjTPFCDjgoteO-UFo0za3A7QbDY1yr2tYpDrUEoOuHdVGr3Dy2G45v5n_sDHPx_vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673980428</pqid></control><display><type>article</type><title>Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Katsuyama, Yuto ; Haba, Nagihiro ; Kobayashi, Hiroaki ; Iwase, Kazuyuki ; Kudo, Akira ; Honma, Itaru ; Kaner, Richard B.</creator><creatorcontrib>Katsuyama, Yuto ; Haba, Nagihiro ; Kobayashi, Hiroaki ; Iwase, Kazuyuki ; Kudo, Akira ; Honma, Itaru ; Kaner, Richard B.</creatorcontrib><description>Supercapacitors, which can be charged/discharged rapidly, play important roles in a sustainable society. Thick electrodes can reduce the ratio of inactive components in the overall cell while simultaneously improving energy and power densities. However, thick electrodes induce longer ion diffusion pathways, and capacitance drops dramatically after a certain thickness. To overcome this, precisely designed macro‐ and nano‐porous 3D‐hierarchical carbon lattices, where ions can diffuse freely inside the electrode, are prepared by combining an inexpensive stereolithography‐type 3D printer, whose resolution is 50 µm, with a simple CO2 activation process. The activated 3D carbon lattice with a 66% burn‐off ratio (3D‐CL‐A66%) has ordered macropores (≈150 µm) and uniform nanopores (2–3 nm), exhibiting a maximum areal capacitance of 5251 mF cm–2 at 3 mA cm–2. Furthermore, manganese oxide is electrochemically deposited on 3D‐CL‐A16% for 8 min (3D‐CL‐A16%‐MnO2‐8 min), increasing the areal capacitance by 2.5‐times. Finally, an all‐3D‐printed asymmetric 1.8 V supercapacitor is prepared by combining 3D‐CL‐A16%‐MnO2‐8 min and 3D‐CL‐A66% as the positive and negative electrodes, respectively, demonstrating a maximum energy density of 0.808 mWh cm–2 at a power density of 2.48 mW cm–2. The achieved values are one of the highest areal energy and power densities reported so far. A 3D‐hierarchical carbon lattice with ordered macropores (≈150 µm) and uniform nanopores (2–3 nm) for supercapacitor electrodes is successfully prepared using an inexpensive 3D printer and a simple gas activation process. The 3D‐ordered macropores facilitate ion transport inside the thick electrodes. The achieved areal energy and power densities are among the highest values reported to date.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202201544</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Activated carbon ; bimodal porosity ; Capacitance ; Carbon ; Electrodes ; high areal capacitance ; Ion diffusion ; Lattices ; Lithography ; Manganese dioxide ; manganese oxide ; Materials science ; Supercapacitors ; thick electrodes ; Three dimensional printing</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (24), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-9d10563fc4550ffa109ce19a64e8e52f97343eebc36eaf3127cf0e91a33bd4563</citedby><cites>FETCH-LOGICAL-c3834-9d10563fc4550ffa109ce19a64e8e52f97343eebc36eaf3127cf0e91a33bd4563</cites><orcidid>0000-0003-3679-2591 ; 0000-0002-5196-741X ; 0000-0002-6536-576X ; 0000-0003-0345-4924 ; 0000-0001-6705-9515 ; 0000-0002-0830-5509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202201544$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202201544$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Katsuyama, Yuto</creatorcontrib><creatorcontrib>Haba, Nagihiro</creatorcontrib><creatorcontrib>Kobayashi, Hiroaki</creatorcontrib><creatorcontrib>Iwase, Kazuyuki</creatorcontrib><creatorcontrib>Kudo, Akira</creatorcontrib><creatorcontrib>Honma, Itaru</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><title>Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors</title><title>Advanced functional materials</title><description>Supercapacitors, which can be charged/discharged rapidly, play important roles in a sustainable society. Thick electrodes can reduce the ratio of inactive components in the overall cell while simultaneously improving energy and power densities. However, thick electrodes induce longer ion diffusion pathways, and capacitance drops dramatically after a certain thickness. To overcome this, precisely designed macro‐ and nano‐porous 3D‐hierarchical carbon lattices, where ions can diffuse freely inside the electrode, are prepared by combining an inexpensive stereolithography‐type 3D printer, whose resolution is 50 µm, with a simple CO2 activation process. The activated 3D carbon lattice with a 66% burn‐off ratio (3D‐CL‐A66%) has ordered macropores (≈150 µm) and uniform nanopores (2–3 nm), exhibiting a maximum areal capacitance of 5251 mF cm–2 at 3 mA cm–2. Furthermore, manganese oxide is electrochemically deposited on 3D‐CL‐A16% for 8 min (3D‐CL‐A16%‐MnO2‐8 min), increasing the areal capacitance by 2.5‐times. Finally, an all‐3D‐printed asymmetric 1.8 V supercapacitor is prepared by combining 3D‐CL‐A16%‐MnO2‐8 min and 3D‐CL‐A66% as the positive and negative electrodes, respectively, demonstrating a maximum energy density of 0.808 mWh cm–2 at a power density of 2.48 mW cm–2. The achieved values are one of the highest areal energy and power densities reported so far. A 3D‐hierarchical carbon lattice with ordered macropores (≈150 µm) and uniform nanopores (2–3 nm) for supercapacitor electrodes is successfully prepared using an inexpensive 3D printer and a simple gas activation process. The 3D‐ordered macropores facilitate ion transport inside the thick electrodes. The achieved areal energy and power densities are among the highest values reported to date.</description><subject>3D printing</subject><subject>Activated carbon</subject><subject>bimodal porosity</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Electrodes</subject><subject>high areal capacitance</subject><subject>Ion diffusion</subject><subject>Lattices</subject><subject>Lithography</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>Materials science</subject><subject>Supercapacitors</subject><subject>thick electrodes</subject><subject>Three dimensional printing</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhgdRsFa3rgOup-Y2t2VpqxVaFVRwF04ziU2ZTqbJFO3OR_AZfRJTRurSVX7C951z-KPokuABwZheQ6nXA4opxSTh_CjqkZSkMcM0Pz5k8noanXm_wphkGeO9aDMH6ez35xeCukT3UO_zo3V26xEbhzw1yoGTSyOhQiNwC1ujGbStkcojbR2afLQOrCtNDc5UOzQ1b8sANiBNC7VU6GnbKCe7D-v8eXSiofLq4vftRy83k-fRNJ493N6NhrNYspzxuCgJTlKmJU8SrDUQXEhFCki5ylVCdRHOZ0otJEsVaEZoJjVWBQHGFiUPZj-66uY2zm62yrdiZbeuDisFTTNW5JjTPFCDjgoteO-UFo0za3A7QbDY1yr2tYpDrUEoOuHdVGr3Dy2G45v5n_sDHPx_vw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Katsuyama, Yuto</creator><creator>Haba, Nagihiro</creator><creator>Kobayashi, Hiroaki</creator><creator>Iwase, Kazuyuki</creator><creator>Kudo, Akira</creator><creator>Honma, Itaru</creator><creator>Kaner, Richard B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3679-2591</orcidid><orcidid>https://orcid.org/0000-0002-5196-741X</orcidid><orcidid>https://orcid.org/0000-0002-6536-576X</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-6705-9515</orcidid><orcidid>https://orcid.org/0000-0002-0830-5509</orcidid></search><sort><creationdate>20220601</creationdate><title>Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors</title><author>Katsuyama, Yuto ; Haba, Nagihiro ; Kobayashi, Hiroaki ; Iwase, Kazuyuki ; Kudo, Akira ; Honma, Itaru ; Kaner, Richard B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-9d10563fc4550ffa109ce19a64e8e52f97343eebc36eaf3127cf0e91a33bd4563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Activated carbon</topic><topic>bimodal porosity</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Electrodes</topic><topic>high areal capacitance</topic><topic>Ion diffusion</topic><topic>Lattices</topic><topic>Lithography</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>Materials science</topic><topic>Supercapacitors</topic><topic>thick electrodes</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katsuyama, Yuto</creatorcontrib><creatorcontrib>Haba, Nagihiro</creatorcontrib><creatorcontrib>Kobayashi, Hiroaki</creatorcontrib><creatorcontrib>Iwase, Kazuyuki</creatorcontrib><creatorcontrib>Kudo, Akira</creatorcontrib><creatorcontrib>Honma, Itaru</creatorcontrib><creatorcontrib>Kaner, Richard B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katsuyama, Yuto</au><au>Haba, Nagihiro</au><au>Kobayashi, Hiroaki</au><au>Iwase, Kazuyuki</au><au>Kudo, Akira</au><au>Honma, Itaru</au><au>Kaner, Richard B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Supercapacitors, which can be charged/discharged rapidly, play important roles in a sustainable society. Thick electrodes can reduce the ratio of inactive components in the overall cell while simultaneously improving energy and power densities. However, thick electrodes induce longer ion diffusion pathways, and capacitance drops dramatically after a certain thickness. To overcome this, precisely designed macro‐ and nano‐porous 3D‐hierarchical carbon lattices, where ions can diffuse freely inside the electrode, are prepared by combining an inexpensive stereolithography‐type 3D printer, whose resolution is 50 µm, with a simple CO2 activation process. The activated 3D carbon lattice with a 66% burn‐off ratio (3D‐CL‐A66%) has ordered macropores (≈150 µm) and uniform nanopores (2–3 nm), exhibiting a maximum areal capacitance of 5251 mF cm–2 at 3 mA cm–2. Furthermore, manganese oxide is electrochemically deposited on 3D‐CL‐A16% for 8 min (3D‐CL‐A16%‐MnO2‐8 min), increasing the areal capacitance by 2.5‐times. Finally, an all‐3D‐printed asymmetric 1.8 V supercapacitor is prepared by combining 3D‐CL‐A16%‐MnO2‐8 min and 3D‐CL‐A66% as the positive and negative electrodes, respectively, demonstrating a maximum energy density of 0.808 mWh cm–2 at a power density of 2.48 mW cm–2. The achieved values are one of the highest areal energy and power densities reported so far. A 3D‐hierarchical carbon lattice with ordered macropores (≈150 µm) and uniform nanopores (2–3 nm) for supercapacitor electrodes is successfully prepared using an inexpensive 3D printer and a simple gas activation process. The 3D‐ordered macropores facilitate ion transport inside the thick electrodes. The achieved areal energy and power densities are among the highest values reported to date.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202201544</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3679-2591</orcidid><orcidid>https://orcid.org/0000-0002-5196-741X</orcidid><orcidid>https://orcid.org/0000-0002-6536-576X</orcidid><orcidid>https://orcid.org/0000-0003-0345-4924</orcidid><orcidid>https://orcid.org/0000-0001-6705-9515</orcidid><orcidid>https://orcid.org/0000-0002-0830-5509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-06, Vol.32 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2673980428
source Wiley Online Library Journals Frontfile Complete
subjects 3D printing
Activated carbon
bimodal porosity
Capacitance
Carbon
Electrodes
high areal capacitance
Ion diffusion
Lattices
Lithography
Manganese dioxide
manganese oxide
Materials science
Supercapacitors
thick electrodes
Three dimensional printing
title Macro‐ and Nano‐Porous 3D‐Hierarchical Carbon Lattices for Extraordinarily High Capacitance Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro%E2%80%90%20and%20Nano%E2%80%90Porous%203D%E2%80%90Hierarchical%20Carbon%20Lattices%20for%20Extraordinarily%20High%20Capacitance%20Supercapacitors&rft.jtitle=Advanced%20functional%20materials&rft.au=Katsuyama,%20Yuto&rft.date=2022-06-01&rft.volume=32&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202201544&rft_dat=%3Cproquest_cross%3E2673980428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673980428&rft_id=info:pmid/&rfr_iscdi=true