Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products

Electrochemical reduction of carbon dioxide (CO2RR) into value‐added chemicals is a promising tactic to mitigate global warming. However, this process resists catalyst preparation, low faradaic efficiency (FE%) towards multi‐carbon products, and insights into mechanistic understanding. Indeed, it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (24), p.n/a
Hauptverfasser: Lakshmanan, Keseven, Huang, Wei‐Hsiang, Chala, Soressa Abera, Taklu, Bereket Woldegbreal, Moges, Endalkachew Asefa, Lee, Jyh‐Fu, Huang, Pei‐Yu, Lee, Yao‐Chang, Tsai, Meng‐Che, Su, Wei‐Nien, Hwang, Bing Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced functional materials
container_volume 32
creator Lakshmanan, Keseven
Huang, Wei‐Hsiang
Chala, Soressa Abera
Taklu, Bereket Woldegbreal
Moges, Endalkachew Asefa
Lee, Jyh‐Fu
Huang, Pei‐Yu
Lee, Yao‐Chang
Tsai, Meng‐Che
Su, Wei‐Nien
Hwang, Bing Joe
description Electrochemical reduction of carbon dioxide (CO2RR) into value‐added chemicals is a promising tactic to mitigate global warming. However, this process resists catalyst preparation, low faradaic efficiency (FE%) towards multi‐carbon products, and insights into mechanistic understanding. Indeed, it is demonstrated that this Fe single‐atom catalyst (Fe SAC) exists in three oxygen coordination of Fe–(O)3 configuration in Nafion coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs), which is obtained via a simple ionic exchange method under ambient conditions. The electrochemical performance reveals that Fe SACs achieve an FE of 45% and a yield rate of 56.42 µmol cm−2 h−1 at −0.8 VRHE for ethanol. In situ X‐ray analysis reveals that the Fe SACs have variable electronic states and keeps close +3 of the oxidation state at the potential range of CO2RR. The catalytic feature reduces the reaction energy and induces the electrons transferred to the adsorbed products intermediates of *COOH and *OCHO, thus promoting CO. The carboxylic functional group on the CNTs stabilizes the Fe active sites via electrostatic interaction, verified by density functional theory calculations. The yield rate of Fe SACs indicates that the Fe single‐atom site can instantly provide a large CO to help conversion of CO2‐to‐C2 product on the CNTs. The Fe–(O)3 single‐atom catalyst synthesis via a simple ionic exchange method on Nafion‐coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs). The Fe SACs and functionalized CNTs are dual active sites toward CO2RR with enhanced selectivity of C2 products. During CO2RR, the carboxylic functional group stabilizes the Fe single‐atom active catalytic site via electrostatic interactions.
doi_str_mv 10.1002/adfm.202109310
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2673980360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673980360</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-64bd6cf663b37054315a5bbaf531846d6992ec97b99781ba170821c1b597d5333</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhCMEEqVw5WyJc8A_iR0fo9BSpFZF_EjcIid2UldJXByHkhuP0GfkSUhV6Glntd_OSON51wjeIgjxnZBFfYshRpATBE-8EaKI-gTi6PSo0fu5d9G2awgRYyQYebuZLldVD-Lc6U8Fll99qRqQGGOlboRTctBNocvOCqdNA0wBpgq86Kas1M_3LnamBolwoupbB5zZCivBpFK5syZfqVrnogLPSnb5_3eyxEA3zoBFVzk9WCTCZsPpyZo91V56Z4WoWnX1N8fe23Tymsz8-fLhMYnn_gYTAn0aZJLmBaUkIwyGAUGhCLNMFCFBUUAl5RyrnLOMcxahTCAGI4xylIWcyZAQMvZuDr4baz461bp0bTrbDJEppozwCBIKB4ofqK2uVJ9urK6F7VME033l6b7y9Fh5Gt9PF8eN_AJB_no_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673980360</pqid></control><display><type>article</type><title>Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lakshmanan, Keseven ; Huang, Wei‐Hsiang ; Chala, Soressa Abera ; Taklu, Bereket Woldegbreal ; Moges, Endalkachew Asefa ; Lee, Jyh‐Fu ; Huang, Pei‐Yu ; Lee, Yao‐Chang ; Tsai, Meng‐Che ; Su, Wei‐Nien ; Hwang, Bing Joe</creator><creatorcontrib>Lakshmanan, Keseven ; Huang, Wei‐Hsiang ; Chala, Soressa Abera ; Taklu, Bereket Woldegbreal ; Moges, Endalkachew Asefa ; Lee, Jyh‐Fu ; Huang, Pei‐Yu ; Lee, Yao‐Chang ; Tsai, Meng‐Che ; Su, Wei‐Nien ; Hwang, Bing Joe</creatorcontrib><description>Electrochemical reduction of carbon dioxide (CO2RR) into value‐added chemicals is a promising tactic to mitigate global warming. However, this process resists catalyst preparation, low faradaic efficiency (FE%) towards multi‐carbon products, and insights into mechanistic understanding. Indeed, it is demonstrated that this Fe single‐atom catalyst (Fe SAC) exists in three oxygen coordination of Fe–(O)3 configuration in Nafion coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs), which is obtained via a simple ionic exchange method under ambient conditions. The electrochemical performance reveals that Fe SACs achieve an FE of 45% and a yield rate of 56.42 µmol cm−2 h−1 at −0.8 VRHE for ethanol. In situ X‐ray analysis reveals that the Fe SACs have variable electronic states and keeps close +3 of the oxidation state at the potential range of CO2RR. The catalytic feature reduces the reaction energy and induces the electrons transferred to the adsorbed products intermediates of *COOH and *OCHO, thus promoting CO. The carboxylic functional group on the CNTs stabilizes the Fe active sites via electrostatic interaction, verified by density functional theory calculations. The yield rate of Fe SACs indicates that the Fe single‐atom site can instantly provide a large CO to help conversion of CO2‐to‐C2 product on the CNTs. The Fe–(O)3 single‐atom catalyst synthesis via a simple ionic exchange method on Nafion‐coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs). The Fe SACs and functionalized CNTs are dual active sites toward CO2RR with enhanced selectivity of C2 products. During CO2RR, the carboxylic functional group stabilizes the Fe single‐atom active catalytic site via electrostatic interactions.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202109310</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Chemical reduction ; CO 2 electroreduction ; Configurations ; Density functional theory ; Electrochemical analysis ; Electron states ; Ethanol ; Fe–(O) 3 moiety ; Functional groups ; in situ analysis ; ionic exchange method ; Materials science ; Mathematical analysis ; Multi wall carbon nanotubes ; multi‐carbon products ; Oxidation ; Oxygen ; Single atom catalysts ; Valence</subject><ispartof>Advanced functional materials, 2022-06, Vol.32 (24), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3873-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202109310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202109310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lakshmanan, Keseven</creatorcontrib><creatorcontrib>Huang, Wei‐Hsiang</creatorcontrib><creatorcontrib>Chala, Soressa Abera</creatorcontrib><creatorcontrib>Taklu, Bereket Woldegbreal</creatorcontrib><creatorcontrib>Moges, Endalkachew Asefa</creatorcontrib><creatorcontrib>Lee, Jyh‐Fu</creatorcontrib><creatorcontrib>Huang, Pei‐Yu</creatorcontrib><creatorcontrib>Lee, Yao‐Chang</creatorcontrib><creatorcontrib>Tsai, Meng‐Che</creatorcontrib><creatorcontrib>Su, Wei‐Nien</creatorcontrib><creatorcontrib>Hwang, Bing Joe</creatorcontrib><title>Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products</title><title>Advanced functional materials</title><description>Electrochemical reduction of carbon dioxide (CO2RR) into value‐added chemicals is a promising tactic to mitigate global warming. However, this process resists catalyst preparation, low faradaic efficiency (FE%) towards multi‐carbon products, and insights into mechanistic understanding. Indeed, it is demonstrated that this Fe single‐atom catalyst (Fe SAC) exists in three oxygen coordination of Fe–(O)3 configuration in Nafion coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs), which is obtained via a simple ionic exchange method under ambient conditions. The electrochemical performance reveals that Fe SACs achieve an FE of 45% and a yield rate of 56.42 µmol cm−2 h−1 at −0.8 VRHE for ethanol. In situ X‐ray analysis reveals that the Fe SACs have variable electronic states and keeps close +3 of the oxidation state at the potential range of CO2RR. The catalytic feature reduces the reaction energy and induces the electrons transferred to the adsorbed products intermediates of *COOH and *OCHO, thus promoting CO. The carboxylic functional group on the CNTs stabilizes the Fe active sites via electrostatic interaction, verified by density functional theory calculations. The yield rate of Fe SACs indicates that the Fe single‐atom site can instantly provide a large CO to help conversion of CO2‐to‐C2 product on the CNTs. The Fe–(O)3 single‐atom catalyst synthesis via a simple ionic exchange method on Nafion‐coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs). The Fe SACs and functionalized CNTs are dual active sites toward CO2RR with enhanced selectivity of C2 products. During CO2RR, the carboxylic functional group stabilizes the Fe single‐atom active catalytic site via electrostatic interactions.</description><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>CO 2 electroreduction</subject><subject>Configurations</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>Electron states</subject><subject>Ethanol</subject><subject>Fe–(O) 3 moiety</subject><subject>Functional groups</subject><subject>in situ analysis</subject><subject>ionic exchange method</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Multi wall carbon nanotubes</subject><subject>multi‐carbon products</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Single atom catalysts</subject><subject>Valence</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhCMEEqVw5WyJc8A_iR0fo9BSpFZF_EjcIid2UldJXByHkhuP0GfkSUhV6Glntd_OSON51wjeIgjxnZBFfYshRpATBE-8EaKI-gTi6PSo0fu5d9G2awgRYyQYebuZLldVD-Lc6U8Fll99qRqQGGOlboRTctBNocvOCqdNA0wBpgq86Kas1M_3LnamBolwoupbB5zZCivBpFK5syZfqVrnogLPSnb5_3eyxEA3zoBFVzk9WCTCZsPpyZo91V56Z4WoWnX1N8fe23Tymsz8-fLhMYnn_gYTAn0aZJLmBaUkIwyGAUGhCLNMFCFBUUAl5RyrnLOMcxahTCAGI4xylIWcyZAQMvZuDr4baz461bp0bTrbDJEppozwCBIKB4ofqK2uVJ9urK6F7VME033l6b7y9Fh5Gt9PF8eN_AJB_no_</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lakshmanan, Keseven</creator><creator>Huang, Wei‐Hsiang</creator><creator>Chala, Soressa Abera</creator><creator>Taklu, Bereket Woldegbreal</creator><creator>Moges, Endalkachew Asefa</creator><creator>Lee, Jyh‐Fu</creator><creator>Huang, Pei‐Yu</creator><creator>Lee, Yao‐Chang</creator><creator>Tsai, Meng‐Che</creator><creator>Su, Wei‐Nien</creator><creator>Hwang, Bing Joe</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3873-2149</orcidid></search><sort><creationdate>20220601</creationdate><title>Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products</title><author>Lakshmanan, Keseven ; Huang, Wei‐Hsiang ; Chala, Soressa Abera ; Taklu, Bereket Woldegbreal ; Moges, Endalkachew Asefa ; Lee, Jyh‐Fu ; Huang, Pei‐Yu ; Lee, Yao‐Chang ; Tsai, Meng‐Che ; Su, Wei‐Nien ; Hwang, Bing Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-64bd6cf663b37054315a5bbaf531846d6992ec97b99781ba170821c1b597d5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>CO 2 electroreduction</topic><topic>Configurations</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>Electron states</topic><topic>Ethanol</topic><topic>Fe–(O) 3 moiety</topic><topic>Functional groups</topic><topic>in situ analysis</topic><topic>ionic exchange method</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Multi wall carbon nanotubes</topic><topic>multi‐carbon products</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Single atom catalysts</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakshmanan, Keseven</creatorcontrib><creatorcontrib>Huang, Wei‐Hsiang</creatorcontrib><creatorcontrib>Chala, Soressa Abera</creatorcontrib><creatorcontrib>Taklu, Bereket Woldegbreal</creatorcontrib><creatorcontrib>Moges, Endalkachew Asefa</creatorcontrib><creatorcontrib>Lee, Jyh‐Fu</creatorcontrib><creatorcontrib>Huang, Pei‐Yu</creatorcontrib><creatorcontrib>Lee, Yao‐Chang</creatorcontrib><creatorcontrib>Tsai, Meng‐Che</creatorcontrib><creatorcontrib>Su, Wei‐Nien</creatorcontrib><creatorcontrib>Hwang, Bing Joe</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakshmanan, Keseven</au><au>Huang, Wei‐Hsiang</au><au>Chala, Soressa Abera</au><au>Taklu, Bereket Woldegbreal</au><au>Moges, Endalkachew Asefa</au><au>Lee, Jyh‐Fu</au><au>Huang, Pei‐Yu</au><au>Lee, Yao‐Chang</au><au>Tsai, Meng‐Che</au><au>Su, Wei‐Nien</au><au>Hwang, Bing Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products</atitle><jtitle>Advanced functional materials</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>32</volume><issue>24</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Electrochemical reduction of carbon dioxide (CO2RR) into value‐added chemicals is a promising tactic to mitigate global warming. However, this process resists catalyst preparation, low faradaic efficiency (FE%) towards multi‐carbon products, and insights into mechanistic understanding. Indeed, it is demonstrated that this Fe single‐atom catalyst (Fe SAC) exists in three oxygen coordination of Fe–(O)3 configuration in Nafion coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs), which is obtained via a simple ionic exchange method under ambient conditions. The electrochemical performance reveals that Fe SACs achieve an FE of 45% and a yield rate of 56.42 µmol cm−2 h−1 at −0.8 VRHE for ethanol. In situ X‐ray analysis reveals that the Fe SACs have variable electronic states and keeps close +3 of the oxidation state at the potential range of CO2RR. The catalytic feature reduces the reaction energy and induces the electrons transferred to the adsorbed products intermediates of *COOH and *OCHO, thus promoting CO. The carboxylic functional group on the CNTs stabilizes the Fe active sites via electrostatic interaction, verified by density functional theory calculations. The yield rate of Fe SACs indicates that the Fe single‐atom site can instantly provide a large CO to help conversion of CO2‐to‐C2 product on the CNTs. The Fe–(O)3 single‐atom catalyst synthesis via a simple ionic exchange method on Nafion‐coated functionalized multi‐wall carbon nanotubes (Fe‐n‐f‐CNTs). The Fe SACs and functionalized CNTs are dual active sites toward CO2RR with enhanced selectivity of C2 products. During CO2RR, the carboxylic functional group stabilizes the Fe single‐atom active catalytic site via electrostatic interactions.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202109310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3873-2149</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-06, Vol.32 (24), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2673980360
source Wiley Online Library Journals Frontfile Complete
subjects Carbon dioxide
Chemical reduction
CO 2 electroreduction
Configurations
Density functional theory
Electrochemical analysis
Electron states
Ethanol
Fe–(O) 3 moiety
Functional groups
in situ analysis
ionic exchange method
Materials science
Mathematical analysis
Multi wall carbon nanotubes
multi‐carbon products
Oxidation
Oxygen
Single atom catalysts
Valence
title Highly Active Oxygen Coordinated Configuration of Fe Single‐Atom Catalyst toward Electrochemical Reduction of CO2 into Multi‐Carbon Products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Active%20Oxygen%20Coordinated%20Configuration%20of%20Fe%20Single%E2%80%90Atom%20Catalyst%20toward%20Electrochemical%20Reduction%20of%20CO2%20into%20Multi%E2%80%90Carbon%20Products&rft.jtitle=Advanced%20functional%20materials&rft.au=Lakshmanan,%20Keseven&rft.date=2022-06-01&rft.volume=32&rft.issue=24&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202109310&rft_dat=%3Cproquest_wiley%3E2673980360%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673980360&rft_id=info:pmid/&rfr_iscdi=true