Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2
An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This med...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2022-07, Vol.139 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Vasiliev, Gleb O. Pigaleva, Marina A. Blagodatskikh, Inesa V. Mazur, Dmitrii M. Levin, Eduard E. Naumkin, Alexander V. Kharitonova, Elena P. Gallyamov, Marat O. |
description | An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased. |
doi_str_mv | 10.1002/app.52514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2673958258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673958258</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2234-a3c6df6abcd2b4b24d410b746b474c79923b0e6562ebfec89dd8285a8f4b12a93</originalsourceid><addsrcrecordid>eNotkEtOwzAURS0EEqUwYAeWGKe1HTuxh1XET6rUDmBs2Y7TukrjYCfQdsQSWCMrIW0ZvSu9o3ulA8A9RhOMEJmqtp0wwjC9ACOMRJ7QjPBLMBp-OOFCsGtwE-MGIYwZykbgUKxd56NqoN-5UnXu08JoXIzON9A1MNq6-v3-aWzfBVW7g2tWUDtv_LYdYF0PtK_77kj7CrY2-N3eqKB94wxUxpWwb0ob4Nqt1kNPG2yMfbCwWJBbcFWpOtq7_zsG70-Pb8VLMl88vxazedISktJEpSYrq0xpUxJNNaElxUjnNNM0pyYXgqQa2YxlxOrKGi7KkhPOFK-oxkSJdAwezr1t8B-9jZ3c-D40w6QkWZ4KxgnjAzU9U1-utnvZBrdVYS8xkkevcvAqT17lbLk8hfQP5h1yCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673958258</pqid></control><display><type>article</type><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><source>Wiley Journals</source><creator>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</creator><creatorcontrib>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</creatorcontrib><description>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52514</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Acids ; Biocompatibility ; biopolymers and renewable polymers ; Bonding agents ; Bonding strength ; Carbon dioxide ; Carbonic acid ; Chitosan ; Cleavage ; Decomposition ; degradation ; Hydrogen peroxide ; Infrared spectroscopy ; Low concentrations ; Mass spectrometry ; Materials science ; Neutralizing ; Oligomers ; Oxidation ; Oxidizing agents ; Photoelectrons ; Polymers ; polysaccharides ; Production methods ; Thermal stability</subject><ispartof>Journal of applied polymer science, 2022-07, Vol.139 (28), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.52514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.52514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vasiliev, Gleb O.</creatorcontrib><creatorcontrib>Pigaleva, Marina A.</creatorcontrib><creatorcontrib>Blagodatskikh, Inesa V.</creatorcontrib><creatorcontrib>Mazur, Dmitrii M.</creatorcontrib><creatorcontrib>Levin, Eduard E.</creatorcontrib><creatorcontrib>Naumkin, Alexander V.</creatorcontrib><creatorcontrib>Kharitonova, Elena P.</creatorcontrib><creatorcontrib>Gallyamov, Marat O.</creatorcontrib><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><title>Journal of applied polymer science</title><description>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</description><subject>Acids</subject><subject>Biocompatibility</subject><subject>biopolymers and renewable polymers</subject><subject>Bonding agents</subject><subject>Bonding strength</subject><subject>Carbon dioxide</subject><subject>Carbonic acid</subject><subject>Chitosan</subject><subject>Cleavage</subject><subject>Decomposition</subject><subject>degradation</subject><subject>Hydrogen peroxide</subject><subject>Infrared spectroscopy</subject><subject>Low concentrations</subject><subject>Mass spectrometry</subject><subject>Materials science</subject><subject>Neutralizing</subject><subject>Oligomers</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>polysaccharides</subject><subject>Production methods</subject><subject>Thermal stability</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAURS0EEqUwYAeWGKe1HTuxh1XET6rUDmBs2Y7TukrjYCfQdsQSWCMrIW0ZvSu9o3ulA8A9RhOMEJmqtp0wwjC9ACOMRJ7QjPBLMBp-OOFCsGtwE-MGIYwZykbgUKxd56NqoN-5UnXu08JoXIzON9A1MNq6-v3-aWzfBVW7g2tWUDtv_LYdYF0PtK_77kj7CrY2-N3eqKB94wxUxpWwb0ob4Nqt1kNPG2yMfbCwWJBbcFWpOtq7_zsG70-Pb8VLMl88vxazedISktJEpSYrq0xpUxJNNaElxUjnNNM0pyYXgqQa2YxlxOrKGi7KkhPOFK-oxkSJdAwezr1t8B-9jZ3c-D40w6QkWZ4KxgnjAzU9U1-utnvZBrdVYS8xkkevcvAqT17lbLk8hfQP5h1yCw</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Vasiliev, Gleb O.</creator><creator>Pigaleva, Marina A.</creator><creator>Blagodatskikh, Inesa V.</creator><creator>Mazur, Dmitrii M.</creator><creator>Levin, Eduard E.</creator><creator>Naumkin, Alexander V.</creator><creator>Kharitonova, Elena P.</creator><creator>Gallyamov, Marat O.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220720</creationdate><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><author>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2234-a3c6df6abcd2b4b24d410b746b474c79923b0e6562ebfec89dd8285a8f4b12a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Biocompatibility</topic><topic>biopolymers and renewable polymers</topic><topic>Bonding agents</topic><topic>Bonding strength</topic><topic>Carbon dioxide</topic><topic>Carbonic acid</topic><topic>Chitosan</topic><topic>Cleavage</topic><topic>Decomposition</topic><topic>degradation</topic><topic>Hydrogen peroxide</topic><topic>Infrared spectroscopy</topic><topic>Low concentrations</topic><topic>Mass spectrometry</topic><topic>Materials science</topic><topic>Neutralizing</topic><topic>Oligomers</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>polysaccharides</topic><topic>Production methods</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasiliev, Gleb O.</creatorcontrib><creatorcontrib>Pigaleva, Marina A.</creatorcontrib><creatorcontrib>Blagodatskikh, Inesa V.</creatorcontrib><creatorcontrib>Mazur, Dmitrii M.</creatorcontrib><creatorcontrib>Levin, Eduard E.</creatorcontrib><creatorcontrib>Naumkin, Alexander V.</creatorcontrib><creatorcontrib>Kharitonova, Elena P.</creatorcontrib><creatorcontrib>Gallyamov, Marat O.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasiliev, Gleb O.</au><au>Pigaleva, Marina A.</au><au>Blagodatskikh, Inesa V.</au><au>Mazur, Dmitrii M.</au><au>Levin, Eduard E.</au><au>Naumkin, Alexander V.</au><au>Kharitonova, Elena P.</au><au>Gallyamov, Marat O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-07-20</date><risdate>2022</risdate><volume>139</volume><issue>28</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.52514</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-07, Vol.139 (28), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2673958258 |
source | Wiley Journals |
subjects | Acids Biocompatibility biopolymers and renewable polymers Bonding agents Bonding strength Carbon dioxide Carbonic acid Chitosan Cleavage Decomposition degradation Hydrogen peroxide Infrared spectroscopy Low concentrations Mass spectrometry Materials science Neutralizing Oligomers Oxidation Oxidizing agents Photoelectrons Polymers polysaccharides Production methods Thermal stability |
title | Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20oxidative%20scission%20in%20self%E2%80%90neutralizing%20biocompatible%20solution%20of%20peroxycarbonic%20acid%20under%20high%E2%80%90pressure%20CO2&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Vasiliev,%20Gleb%20O.&rft.date=2022-07-20&rft.volume=139&rft.issue=28&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52514&rft_dat=%3Cproquest_wiley%3E2673958258%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673958258&rft_id=info:pmid/&rfr_iscdi=true |