Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2

An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-07, Vol.139 (28), p.n/a
Hauptverfasser: Vasiliev, Gleb O., Pigaleva, Marina A., Blagodatskikh, Inesa V., Mazur, Dmitrii M., Levin, Eduard E., Naumkin, Alexander V., Kharitonova, Elena P., Gallyamov, Marat O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Vasiliev, Gleb O.
Pigaleva, Marina A.
Blagodatskikh, Inesa V.
Mazur, Dmitrii M.
Levin, Eduard E.
Naumkin, Alexander V.
Kharitonova, Elena P.
Gallyamov, Marat O.
description An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.
doi_str_mv 10.1002/app.52514
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2673958258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673958258</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2234-a3c6df6abcd2b4b24d410b746b474c79923b0e6562ebfec89dd8285a8f4b12a93</originalsourceid><addsrcrecordid>eNotkEtOwzAURS0EEqUwYAeWGKe1HTuxh1XET6rUDmBs2Y7TukrjYCfQdsQSWCMrIW0ZvSu9o3ulA8A9RhOMEJmqtp0wwjC9ACOMRJ7QjPBLMBp-OOFCsGtwE-MGIYwZykbgUKxd56NqoN-5UnXu08JoXIzON9A1MNq6-v3-aWzfBVW7g2tWUDtv_LYdYF0PtK_77kj7CrY2-N3eqKB94wxUxpWwb0ob4Nqt1kNPG2yMfbCwWJBbcFWpOtq7_zsG70-Pb8VLMl88vxazedISktJEpSYrq0xpUxJNNaElxUjnNNM0pyYXgqQa2YxlxOrKGi7KkhPOFK-oxkSJdAwezr1t8B-9jZ3c-D40w6QkWZ4KxgnjAzU9U1-utnvZBrdVYS8xkkevcvAqT17lbLk8hfQP5h1yCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673958258</pqid></control><display><type>article</type><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><source>Wiley Journals</source><creator>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</creator><creatorcontrib>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</creatorcontrib><description>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.52514</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acids ; Biocompatibility ; biopolymers and renewable polymers ; Bonding agents ; Bonding strength ; Carbon dioxide ; Carbonic acid ; Chitosan ; Cleavage ; Decomposition ; degradation ; Hydrogen peroxide ; Infrared spectroscopy ; Low concentrations ; Mass spectrometry ; Materials science ; Neutralizing ; Oligomers ; Oxidation ; Oxidizing agents ; Photoelectrons ; Polymers ; polysaccharides ; Production methods ; Thermal stability</subject><ispartof>Journal of applied polymer science, 2022-07, Vol.139 (28), p.n/a</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.52514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.52514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vasiliev, Gleb O.</creatorcontrib><creatorcontrib>Pigaleva, Marina A.</creatorcontrib><creatorcontrib>Blagodatskikh, Inesa V.</creatorcontrib><creatorcontrib>Mazur, Dmitrii M.</creatorcontrib><creatorcontrib>Levin, Eduard E.</creatorcontrib><creatorcontrib>Naumkin, Alexander V.</creatorcontrib><creatorcontrib>Kharitonova, Elena P.</creatorcontrib><creatorcontrib>Gallyamov, Marat O.</creatorcontrib><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><title>Journal of applied polymer science</title><description>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</description><subject>Acids</subject><subject>Biocompatibility</subject><subject>biopolymers and renewable polymers</subject><subject>Bonding agents</subject><subject>Bonding strength</subject><subject>Carbon dioxide</subject><subject>Carbonic acid</subject><subject>Chitosan</subject><subject>Cleavage</subject><subject>Decomposition</subject><subject>degradation</subject><subject>Hydrogen peroxide</subject><subject>Infrared spectroscopy</subject><subject>Low concentrations</subject><subject>Mass spectrometry</subject><subject>Materials science</subject><subject>Neutralizing</subject><subject>Oligomers</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Photoelectrons</subject><subject>Polymers</subject><subject>polysaccharides</subject><subject>Production methods</subject><subject>Thermal stability</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEtOwzAURS0EEqUwYAeWGKe1HTuxh1XET6rUDmBs2Y7TukrjYCfQdsQSWCMrIW0ZvSu9o3ulA8A9RhOMEJmqtp0wwjC9ACOMRJ7QjPBLMBp-OOFCsGtwE-MGIYwZykbgUKxd56NqoN-5UnXu08JoXIzON9A1MNq6-v3-aWzfBVW7g2tWUDtv_LYdYF0PtK_77kj7CrY2-N3eqKB94wxUxpWwb0ob4Nqt1kNPG2yMfbCwWJBbcFWpOtq7_zsG70-Pb8VLMl88vxazedISktJEpSYrq0xpUxJNNaElxUjnNNM0pyYXgqQa2YxlxOrKGi7KkhPOFK-oxkSJdAwezr1t8B-9jZ3c-D40w6QkWZ4KxgnjAzU9U1-utnvZBrdVYS8xkkevcvAqT17lbLk8hfQP5h1yCw</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Vasiliev, Gleb O.</creator><creator>Pigaleva, Marina A.</creator><creator>Blagodatskikh, Inesa V.</creator><creator>Mazur, Dmitrii M.</creator><creator>Levin, Eduard E.</creator><creator>Naumkin, Alexander V.</creator><creator>Kharitonova, Elena P.</creator><creator>Gallyamov, Marat O.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220720</creationdate><title>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</title><author>Vasiliev, Gleb O. ; Pigaleva, Marina A. ; Blagodatskikh, Inesa V. ; Mazur, Dmitrii M. ; Levin, Eduard E. ; Naumkin, Alexander V. ; Kharitonova, Elena P. ; Gallyamov, Marat O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2234-a3c6df6abcd2b4b24d410b746b474c79923b0e6562ebfec89dd8285a8f4b12a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acids</topic><topic>Biocompatibility</topic><topic>biopolymers and renewable polymers</topic><topic>Bonding agents</topic><topic>Bonding strength</topic><topic>Carbon dioxide</topic><topic>Carbonic acid</topic><topic>Chitosan</topic><topic>Cleavage</topic><topic>Decomposition</topic><topic>degradation</topic><topic>Hydrogen peroxide</topic><topic>Infrared spectroscopy</topic><topic>Low concentrations</topic><topic>Mass spectrometry</topic><topic>Materials science</topic><topic>Neutralizing</topic><topic>Oligomers</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Photoelectrons</topic><topic>Polymers</topic><topic>polysaccharides</topic><topic>Production methods</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasiliev, Gleb O.</creatorcontrib><creatorcontrib>Pigaleva, Marina A.</creatorcontrib><creatorcontrib>Blagodatskikh, Inesa V.</creatorcontrib><creatorcontrib>Mazur, Dmitrii M.</creatorcontrib><creatorcontrib>Levin, Eduard E.</creatorcontrib><creatorcontrib>Naumkin, Alexander V.</creatorcontrib><creatorcontrib>Kharitonova, Elena P.</creatorcontrib><creatorcontrib>Gallyamov, Marat O.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasiliev, Gleb O.</au><au>Pigaleva, Marina A.</au><au>Blagodatskikh, Inesa V.</au><au>Mazur, Dmitrii M.</au><au>Levin, Eduard E.</au><au>Naumkin, Alexander V.</au><au>Kharitonova, Elena P.</au><au>Gallyamov, Marat O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-07-20</date><risdate>2022</risdate><volume>139</volume><issue>28</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>An important scientific task is the search for inexpensive and environmentally friendly methods for the production of chitosan oligomers. In the present work, the possibility of chitosan decomposition in the presence of peroxycarbonic acid solutions under high CO2 pressure was investigated. This medium contains self‐neutralizing carbonic acid used here to dissolve chitosan as well as peroxycarbonic acid formed from aqueous hydrogen peroxide, which acts as an oxidizing agent strong enough to break the glycosidic bonds of chitosan. The resulting chitosan decomposition product was analyzed by a number of analytical methods, such as IR spectroscopy, UV–vis spectroscopy, X‐ray photoelectron spectroscopy, high resolution mass spectrometry, and X‐ray diffraction. It was found that even with relatively low concentrations of hydrogen peroxide and short processing times, it is possible to obtain chitosan oligomers with a molecular weight of about 14 kDa. The obtained polymer was examined by SEM and TG. It showed a good ability to form porous matrices, while its thermal stability somewhat decreased.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.52514</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-07, Vol.139 (28), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2673958258
source Wiley Journals
subjects Acids
Biocompatibility
biopolymers and renewable polymers
Bonding agents
Bonding strength
Carbon dioxide
Carbonic acid
Chitosan
Cleavage
Decomposition
degradation
Hydrogen peroxide
Infrared spectroscopy
Low concentrations
Mass spectrometry
Materials science
Neutralizing
Oligomers
Oxidation
Oxidizing agents
Photoelectrons
Polymers
polysaccharides
Production methods
Thermal stability
title Chitosan oxidative scission in self‐neutralizing biocompatible solution of peroxycarbonic acid under high‐pressure CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan%20oxidative%20scission%20in%20self%E2%80%90neutralizing%20biocompatible%20solution%20of%20peroxycarbonic%20acid%20under%20high%E2%80%90pressure%20CO2&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Vasiliev,%20Gleb%20O.&rft.date=2022-07-20&rft.volume=139&rft.issue=28&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.52514&rft_dat=%3Cproquest_wiley%3E2673958258%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673958258&rft_id=info:pmid/&rfr_iscdi=true