Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise

We study the large deviations principle (LDP) for stationary solutions of a class of stochastic differential equations (SDE) in infinite time intervals by the weak convergence approach, and then establish the LDP for the invariant measures of the SDE by the contraction principle. We further point ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-06
Hauptverfasser: Gao, Peipei, Liu, Yong, Sun, Yue, Zheng, Zuohuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gao, Peipei
Liu, Yong
Sun, Yue
Zheng, Zuohuan
description We study the large deviations principle (LDP) for stationary solutions of a class of stochastic differential equations (SDE) in infinite time intervals by the weak convergence approach, and then establish the LDP for the invariant measures of the SDE by the contraction principle. We further point out the equivalence of the rate function of the LDP for invariant measures induced by the LDP for stationary solutions and the rate function defined by quasi-potential. This fact gives another view of the quasi-potential introduced by Freidlin and Wentzell.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2673713126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673713126</sourcerecordid><originalsourceid>FETCH-proquest_journals_26737131263</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgKNp3WPBcaBP_7qJ48Oi9hHajKzGp2UTx7Q3aB_A08M3HMCMxlUrV5XYp5UQUzLeqquR6I1crNRXhpMMFocMn6UjeMfSBXEu9RTA-AMcv1uEN7G36Kd5k7tur5kgtdGQMBnSRtAV8pGHnRfEK92Rj3qI2wyeC88Q4F2OjLWMx5EwsDvvz7lj2wT8ScmxuPgWXqybfVJta1XKt_rM-vF5NxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673713126</pqid></control><display><type>article</type><title>Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise</title><source>Free E- Journals</source><creator>Gao, Peipei ; Liu, Yong ; Sun, Yue ; Zheng, Zuohuan</creator><creatorcontrib>Gao, Peipei ; Liu, Yong ; Sun, Yue ; Zheng, Zuohuan</creatorcontrib><description>We study the large deviations principle (LDP) for stationary solutions of a class of stochastic differential equations (SDE) in infinite time intervals by the weak convergence approach, and then establish the LDP for the invariant measures of the SDE by the contraction principle. We further point out the equivalence of the rate function of the LDP for invariant measures induced by the LDP for stationary solutions and the rate function defined by quasi-potential. This fact gives another view of the quasi-potential introduced by Freidlin and Wentzell.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deviation ; Differential equations ; Invariants ; Mathematical analysis ; Principles</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gao, Peipei</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zheng, Zuohuan</creatorcontrib><title>Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise</title><title>arXiv.org</title><description>We study the large deviations principle (LDP) for stationary solutions of a class of stochastic differential equations (SDE) in infinite time intervals by the weak convergence approach, and then establish the LDP for the invariant measures of the SDE by the contraction principle. We further point out the equivalence of the rate function of the LDP for invariant measures induced by the LDP for stationary solutions and the rate function defined by quasi-potential. This fact gives another view of the quasi-potential introduced by Freidlin and Wentzell.</description><subject>Deviation</subject><subject>Differential equations</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Principles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KwjAQhIMgKNp3WPBcaBP_7qJ48Oi9hHajKzGp2UTx7Q3aB_A08M3HMCMxlUrV5XYp5UQUzLeqquR6I1crNRXhpMMFocMn6UjeMfSBXEu9RTA-AMcv1uEN7G36Kd5k7tur5kgtdGQMBnSRtAV8pGHnRfEK92Rj3qI2wyeC88Q4F2OjLWMx5EwsDvvz7lj2wT8ScmxuPgWXqybfVJta1XKt_rM-vF5NxQ</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Gao, Peipei</creator><creator>Liu, Yong</creator><creator>Sun, Yue</creator><creator>Zheng, Zuohuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220606</creationdate><title>Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise</title><author>Gao, Peipei ; Liu, Yong ; Sun, Yue ; Zheng, Zuohuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26737131263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deviation</topic><topic>Differential equations</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Peipei</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zheng, Zuohuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Peipei</au><au>Liu, Yong</au><au>Sun, Yue</au><au>Zheng, Zuohuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise</atitle><jtitle>arXiv.org</jtitle><date>2022-06-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study the large deviations principle (LDP) for stationary solutions of a class of stochastic differential equations (SDE) in infinite time intervals by the weak convergence approach, and then establish the LDP for the invariant measures of the SDE by the contraction principle. We further point out the equivalence of the rate function of the LDP for invariant measures induced by the LDP for stationary solutions and the rate function defined by quasi-potential. This fact gives another view of the quasi-potential introduced by Freidlin and Wentzell.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2673713126
source Free E- Journals
subjects Deviation
Differential equations
Invariants
Mathematical analysis
Principles
title Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Large%20deviations%20principle%20for%20stationary%20solutions%20of%20stochastic%20differential%20equations%20with%20multiplicative%20noise&rft.jtitle=arXiv.org&rft.au=Gao,%20Peipei&rft.date=2022-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2673713126%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673713126&rft_id=info:pmid/&rfr_iscdi=true