Investigation of properties and applications of cellulose-mycelium foam
Innovative sustainable products can contribute to slowing climate change while simultaneously driving economic growth. In this study, we describe a ‘green’ technology to produce a porous, lightweight cellulose-mycelium foam (CMF) in which fungal mycelium is grown for applications such as filtration,...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022-06, Vol.57 (22), p.10167-10178 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10178 |
---|---|
container_issue | 22 |
container_start_page | 10167 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Ahmadi, Hoda O’Keefe, Amanda Bilek, Michael A. Korehei, Reza Sella Kapu, Nuwan Martinez, Mark D. Olson, James A. |
description | Innovative sustainable products can contribute to slowing climate change while simultaneously driving economic growth. In this study, we describe a ‘green’ technology to produce a porous, lightweight cellulose-mycelium foam (CMF) in which fungal mycelium is grown for applications such as filtration, packaging, and bioremediation. Fluorescent microscopy revealed incomplete fiber degradation after 25 days of fungal growth, and that mycelium grew along fibers and within the pores of the CMF. The physio-mechanical properties of the CMF were investigated via compressibility, thermogravimetric analysis, and dry and wet tensile strength for samples grown for 0, 15, and 25 days. Thermal stability increased with mycelium growth, showing extrapolated onset temperatures of 227.5 °C, 312.7 °C, and 325.5 °C for 0, 15, and 25 days, respectively. Tensile strength and compressibility were notably improved with mycelial growth. CMF permeability, filtration efficiency, and pressure drop were tested, and we observed a decrease in permeability with mycelium growth in foam fiber, and hydraulic filtration efficiency measured 99.9% for particles sized 20 µm or larger. Living CMF neutralized potassium hydroxide leaks from alkaline batteries, decreasing pH from 12 to 6 over a 60-day period. These results demonstrate a wide range of material improvements, showing promise for practical filtration, thermal insulation, and bioremediation applications while being both sustainable and biodegradable. |
doi_str_mv | 10.1007/s10853-022-07302-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2673711619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A706381848</galeid><sourcerecordid>A706381848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5762c15a53bbaa75e90a5e978ecdd94147f5e2109e1b010b50aea3f8a41831c03</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOD7-gKuCKxfVe5OmaZciPgYEwcc6ZDK3Q6RtatKK_nszVhA3EkhCzneSQw5jJwjnCKAuIkIlRQ6c56AE8LzeYQuUSuRFBWKXLWAr8aLEfXYQ4ysASMVxwW6X_TvF0W3M6Hyf-SYbgh8ojI5iZvp1ZoahdfZbjVvZUttOrY-Ud59p76Yua7zpjtheY9pIxz_rIXu5uX6-usvvH26XV5f3uRWcj7lUJbcojRSrlTFKUg0mTaoiu17XBRaqkcQRasIVIKwkGDKiqUyBlUAL4pCdzvemmG9TSq5f_RT69KTmpRIKscQ6UecztTEtadc3fgzGprGmzlnfU-PS-aWCUlRYFVUynP0xJGakj3Fjphj18unxL8tn1gYfY6BGD8F1JnxqBL1tQ89t6PTl-rsNvU0kZlNMcL-h8Jv7H9cXkRCLsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673711619</pqid></control><display><type>article</type><title>Investigation of properties and applications of cellulose-mycelium foam</title><source>SpringerLink Journals</source><creator>Ahmadi, Hoda ; O’Keefe, Amanda ; Bilek, Michael A. ; Korehei, Reza ; Sella Kapu, Nuwan ; Martinez, Mark D. ; Olson, James A.</creator><creatorcontrib>Ahmadi, Hoda ; O’Keefe, Amanda ; Bilek, Michael A. ; Korehei, Reza ; Sella Kapu, Nuwan ; Martinez, Mark D. ; Olson, James A.</creatorcontrib><description>Innovative sustainable products can contribute to slowing climate change while simultaneously driving economic growth. In this study, we describe a ‘green’ technology to produce a porous, lightweight cellulose-mycelium foam (CMF) in which fungal mycelium is grown for applications such as filtration, packaging, and bioremediation. Fluorescent microscopy revealed incomplete fiber degradation after 25 days of fungal growth, and that mycelium grew along fibers and within the pores of the CMF. The physio-mechanical properties of the CMF were investigated via compressibility, thermogravimetric analysis, and dry and wet tensile strength for samples grown for 0, 15, and 25 days. Thermal stability increased with mycelium growth, showing extrapolated onset temperatures of 227.5 °C, 312.7 °C, and 325.5 °C for 0, 15, and 25 days, respectively. Tensile strength and compressibility were notably improved with mycelial growth. CMF permeability, filtration efficiency, and pressure drop were tested, and we observed a decrease in permeability with mycelium growth in foam fiber, and hydraulic filtration efficiency measured 99.9% for particles sized 20 µm or larger. Living CMF neutralized potassium hydroxide leaks from alkaline batteries, decreasing pH from 12 to 6 over a 60-day period. These results demonstrate a wide range of material improvements, showing promise for practical filtration, thermal insulation, and bioremediation applications while being both sustainable and biodegradable.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-022-07302-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alkaline batteries ; Batteries ; Biodegradability ; Bioremediation ; Cellulose ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Climatic changes ; Composites & Nanocomposites ; Compressibility ; Crystallography and Scattering Methods ; Economic development ; Filtration ; Fluorescence ; Fungi ; Hydroxides ; Investigations ; Materials Science ; Mechanical properties ; Permeability ; Polymer Sciences ; Potassium hydroxides ; Pressure drop ; Solid Mechanics ; Technology application ; Tensile strength ; Thermal insulation ; Thermal stability ; Thermogravimetric analysis</subject><ispartof>Journal of materials science, 2022-06, Vol.57 (22), p.10167-10178</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5762c15a53bbaa75e90a5e978ecdd94147f5e2109e1b010b50aea3f8a41831c03</citedby><cites>FETCH-LOGICAL-c322t-5762c15a53bbaa75e90a5e978ecdd94147f5e2109e1b010b50aea3f8a41831c03</cites><orcidid>0000-0001-6594-262X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-022-07302-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-022-07302-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ahmadi, Hoda</creatorcontrib><creatorcontrib>O’Keefe, Amanda</creatorcontrib><creatorcontrib>Bilek, Michael A.</creatorcontrib><creatorcontrib>Korehei, Reza</creatorcontrib><creatorcontrib>Sella Kapu, Nuwan</creatorcontrib><creatorcontrib>Martinez, Mark D.</creatorcontrib><creatorcontrib>Olson, James A.</creatorcontrib><title>Investigation of properties and applications of cellulose-mycelium foam</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Innovative sustainable products can contribute to slowing climate change while simultaneously driving economic growth. In this study, we describe a ‘green’ technology to produce a porous, lightweight cellulose-mycelium foam (CMF) in which fungal mycelium is grown for applications such as filtration, packaging, and bioremediation. Fluorescent microscopy revealed incomplete fiber degradation after 25 days of fungal growth, and that mycelium grew along fibers and within the pores of the CMF. The physio-mechanical properties of the CMF were investigated via compressibility, thermogravimetric analysis, and dry and wet tensile strength for samples grown for 0, 15, and 25 days. Thermal stability increased with mycelium growth, showing extrapolated onset temperatures of 227.5 °C, 312.7 °C, and 325.5 °C for 0, 15, and 25 days, respectively. Tensile strength and compressibility were notably improved with mycelial growth. CMF permeability, filtration efficiency, and pressure drop were tested, and we observed a decrease in permeability with mycelium growth in foam fiber, and hydraulic filtration efficiency measured 99.9% for particles sized 20 µm or larger. Living CMF neutralized potassium hydroxide leaks from alkaline batteries, decreasing pH from 12 to 6 over a 60-day period. These results demonstrate a wide range of material improvements, showing promise for practical filtration, thermal insulation, and bioremediation applications while being both sustainable and biodegradable.</description><subject>Alkaline batteries</subject><subject>Batteries</subject><subject>Biodegradability</subject><subject>Bioremediation</subject><subject>Cellulose</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Climatic changes</subject><subject>Composites & Nanocomposites</subject><subject>Compressibility</subject><subject>Crystallography and Scattering Methods</subject><subject>Economic development</subject><subject>Filtration</subject><subject>Fluorescence</subject><subject>Fungi</subject><subject>Hydroxides</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Permeability</subject><subject>Polymer Sciences</subject><subject>Potassium hydroxides</subject><subject>Pressure drop</subject><subject>Solid Mechanics</subject><subject>Technology application</subject><subject>Tensile strength</subject><subject>Thermal insulation</subject><subject>Thermal stability</subject><subject>Thermogravimetric analysis</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUtLxDAUhYMoOD7-gKuCKxfVe5OmaZciPgYEwcc6ZDK3Q6RtatKK_nszVhA3EkhCzneSQw5jJwjnCKAuIkIlRQ6c56AE8LzeYQuUSuRFBWKXLWAr8aLEfXYQ4ysASMVxwW6X_TvF0W3M6Hyf-SYbgh8ojI5iZvp1ZoahdfZbjVvZUttOrY-Ud59p76Yua7zpjtheY9pIxz_rIXu5uX6-usvvH26XV5f3uRWcj7lUJbcojRSrlTFKUg0mTaoiu17XBRaqkcQRasIVIKwkGDKiqUyBlUAL4pCdzvemmG9TSq5f_RT69KTmpRIKscQ6UecztTEtadc3fgzGprGmzlnfU-PS-aWCUlRYFVUynP0xJGakj3Fjphj18unxL8tn1gYfY6BGD8F1JnxqBL1tQ89t6PTl-rsNvU0kZlNMcL-h8Jv7H9cXkRCLsw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Ahmadi, Hoda</creator><creator>O’Keefe, Amanda</creator><creator>Bilek, Michael A.</creator><creator>Korehei, Reza</creator><creator>Sella Kapu, Nuwan</creator><creator>Martinez, Mark D.</creator><creator>Olson, James A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6594-262X</orcidid></search><sort><creationdate>20220601</creationdate><title>Investigation of properties and applications of cellulose-mycelium foam</title><author>Ahmadi, Hoda ; O’Keefe, Amanda ; Bilek, Michael A. ; Korehei, Reza ; Sella Kapu, Nuwan ; Martinez, Mark D. ; Olson, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5762c15a53bbaa75e90a5e978ecdd94147f5e2109e1b010b50aea3f8a41831c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkaline batteries</topic><topic>Batteries</topic><topic>Biodegradability</topic><topic>Bioremediation</topic><topic>Cellulose</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Climatic changes</topic><topic>Composites & Nanocomposites</topic><topic>Compressibility</topic><topic>Crystallography and Scattering Methods</topic><topic>Economic development</topic><topic>Filtration</topic><topic>Fluorescence</topic><topic>Fungi</topic><topic>Hydroxides</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Permeability</topic><topic>Polymer Sciences</topic><topic>Potassium hydroxides</topic><topic>Pressure drop</topic><topic>Solid Mechanics</topic><topic>Technology application</topic><topic>Tensile strength</topic><topic>Thermal insulation</topic><topic>Thermal stability</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Hoda</creatorcontrib><creatorcontrib>O’Keefe, Amanda</creatorcontrib><creatorcontrib>Bilek, Michael A.</creatorcontrib><creatorcontrib>Korehei, Reza</creatorcontrib><creatorcontrib>Sella Kapu, Nuwan</creatorcontrib><creatorcontrib>Martinez, Mark D.</creatorcontrib><creatorcontrib>Olson, James A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Hoda</au><au>O’Keefe, Amanda</au><au>Bilek, Michael A.</au><au>Korehei, Reza</au><au>Sella Kapu, Nuwan</au><au>Martinez, Mark D.</au><au>Olson, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of properties and applications of cellulose-mycelium foam</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>57</volume><issue>22</issue><spage>10167</spage><epage>10178</epage><pages>10167-10178</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Innovative sustainable products can contribute to slowing climate change while simultaneously driving economic growth. In this study, we describe a ‘green’ technology to produce a porous, lightweight cellulose-mycelium foam (CMF) in which fungal mycelium is grown for applications such as filtration, packaging, and bioremediation. Fluorescent microscopy revealed incomplete fiber degradation after 25 days of fungal growth, and that mycelium grew along fibers and within the pores of the CMF. The physio-mechanical properties of the CMF were investigated via compressibility, thermogravimetric analysis, and dry and wet tensile strength for samples grown for 0, 15, and 25 days. Thermal stability increased with mycelium growth, showing extrapolated onset temperatures of 227.5 °C, 312.7 °C, and 325.5 °C for 0, 15, and 25 days, respectively. Tensile strength and compressibility were notably improved with mycelial growth. CMF permeability, filtration efficiency, and pressure drop were tested, and we observed a decrease in permeability with mycelium growth in foam fiber, and hydraulic filtration efficiency measured 99.9% for particles sized 20 µm or larger. Living CMF neutralized potassium hydroxide leaks from alkaline batteries, decreasing pH from 12 to 6 over a 60-day period. These results demonstrate a wide range of material improvements, showing promise for practical filtration, thermal insulation, and bioremediation applications while being both sustainable and biodegradable.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-022-07302-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6594-262X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022-06, Vol.57 (22), p.10167-10178 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2673711619 |
source | SpringerLink Journals |
subjects | Alkaline batteries Batteries Biodegradability Bioremediation Cellulose Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Climatic changes Composites & Nanocomposites Compressibility Crystallography and Scattering Methods Economic development Filtration Fluorescence Fungi Hydroxides Investigations Materials Science Mechanical properties Permeability Polymer Sciences Potassium hydroxides Pressure drop Solid Mechanics Technology application Tensile strength Thermal insulation Thermal stability Thermogravimetric analysis |
title | Investigation of properties and applications of cellulose-mycelium foam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20properties%20and%20applications%20of%20cellulose-mycelium%20foam&rft.jtitle=Journal%20of%20materials%20science&rft.au=Ahmadi,%20Hoda&rft.date=2022-06-01&rft.volume=57&rft.issue=22&rft.spage=10167&rft.epage=10178&rft.pages=10167-10178&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-022-07302-9&rft_dat=%3Cgale_proqu%3EA706381848%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673711619&rft_id=info:pmid/&rft_galeid=A706381848&rfr_iscdi=true |