Logic-guided neural network for predicting steel-concrete interfacial behaviors

•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2022-07, Vol.198, p.116820, Article 116820
Hauptverfasser: Mahjoubi, Soroush, Meng, Weina, Bao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116820
container_title Expert systems with applications
container_volume 198
creator Mahjoubi, Soroush
Meng, Weina
Bao, Yi
description •A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction. The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.
doi_str_mv 10.1016/j.eswa.2022.116820
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673376244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422002767</els_id><sourcerecordid>2673376244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisU7wK3YisUEVL6lSN7C2nMmkOJS42E4Rf0-qsGZ1N_fcGR1CrhktGGXqti8wftuCU84LxlTF6QlZsEqLXOlanJIFrUudS6blObmIsaeUaUr1gmzWfusg346uxTYbcAx2N0X69uEj63zI9gFbB8kN2ywmxF0OfoCACTM3JAydBTcRDb7bg_MhXpKzzu4iXv3lkrw9PryunvP15ulldb_OQWie8rKSEqRlQgkOFbR1C7xkmjdVCVRiYxtdgRUSOTILsmk6YKxmUlVWdqWiYklu5t198F8jxmR6P4ZhOmm40kJoxaWcWnxuQfAxBuzMPrhPG34Mo-YozvTmKM4cxZlZ3ATdzRBO_x8cBhPB4QCTh4CQTOvdf_gvL4t3YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673376244</pqid></control><display><type>article</type><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</creator><creatorcontrib>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</creatorcontrib><description>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction. The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116820</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial neural networks ; Bond stress ; Bonding strength ; Composite materials ; Compressive properties ; Compressive strength ; Deep learning ; Incomplete data ; Interfacial properties ; Logic ; Logic-guided neural network ; Machine learning ; Neural networks ; Slip ; Steel ; Support vector machines ; Unstructured data</subject><ispartof>Expert systems with applications, 2022-07, Vol.198, p.116820, Article 116820</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</citedby><cites>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2022.116820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Mahjoubi, Soroush</creatorcontrib><creatorcontrib>Meng, Weina</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><title>Expert systems with applications</title><description>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction. The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</description><subject>Artificial neural networks</subject><subject>Bond stress</subject><subject>Bonding strength</subject><subject>Composite materials</subject><subject>Compressive properties</subject><subject>Compressive strength</subject><subject>Deep learning</subject><subject>Incomplete data</subject><subject>Interfacial properties</subject><subject>Logic</subject><subject>Logic-guided neural network</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Slip</subject><subject>Steel</subject><subject>Support vector machines</subject><subject>Unstructured data</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisU7wK3YisUEVL6lSN7C2nMmkOJS42E4Rf0-qsGZ1N_fcGR1CrhktGGXqti8wftuCU84LxlTF6QlZsEqLXOlanJIFrUudS6blObmIsaeUaUr1gmzWfusg346uxTYbcAx2N0X69uEj63zI9gFbB8kN2ywmxF0OfoCACTM3JAydBTcRDb7bg_MhXpKzzu4iXv3lkrw9PryunvP15ulldb_OQWie8rKSEqRlQgkOFbR1C7xkmjdVCVRiYxtdgRUSOTILsmk6YKxmUlVWdqWiYklu5t198F8jxmR6P4ZhOmm40kJoxaWcWnxuQfAxBuzMPrhPG34Mo-YozvTmKM4cxZlZ3ATdzRBO_x8cBhPB4QCTh4CQTOvdf_gvL4t3YA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Mahjoubi, Soroush</creator><creator>Meng, Weina</creator><creator>Bao, Yi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220715</creationdate><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><author>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bond stress</topic><topic>Bonding strength</topic><topic>Composite materials</topic><topic>Compressive properties</topic><topic>Compressive strength</topic><topic>Deep learning</topic><topic>Incomplete data</topic><topic>Interfacial properties</topic><topic>Logic</topic><topic>Logic-guided neural network</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Slip</topic><topic>Steel</topic><topic>Support vector machines</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahjoubi, Soroush</creatorcontrib><creatorcontrib>Meng, Weina</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahjoubi, Soroush</au><au>Meng, Weina</au><au>Bao, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logic-guided neural network for predicting steel-concrete interfacial behaviors</atitle><jtitle>Expert systems with applications</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>198</volume><spage>116820</spage><pages>116820-</pages><artnum>116820</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction. The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116820</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-07, Vol.198, p.116820, Article 116820
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2673376244
source Access via ScienceDirect (Elsevier)
subjects Artificial neural networks
Bond stress
Bonding strength
Composite materials
Compressive properties
Compressive strength
Deep learning
Incomplete data
Interfacial properties
Logic
Logic-guided neural network
Machine learning
Neural networks
Slip
Steel
Support vector machines
Unstructured data
title Logic-guided neural network for predicting steel-concrete interfacial behaviors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logic-guided%20neural%20network%20for%20predicting%20steel-concrete%20interfacial%20behaviors&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Mahjoubi,%20Soroush&rft.date=2022-07-15&rft.volume=198&rft.spage=116820&rft.pages=116820-&rft.artnum=116820&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116820&rft_dat=%3Cproquest_cross%3E2673376244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673376244&rft_id=info:pmid/&rft_els_id=S0957417422002767&rfr_iscdi=true