Logic-guided neural network for predicting steel-concrete interfacial behaviors
•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2022-07, Vol.198, p.116820, Article 116820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116820 |
container_title | Expert systems with applications |
container_volume | 198 |
creator | Mahjoubi, Soroush Meng, Weina Bao, Yi |
description | •A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction.
The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures. |
doi_str_mv | 10.1016/j.eswa.2022.116820 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673376244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422002767</els_id><sourcerecordid>2673376244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisU7wK3YisUEVL6lSN7C2nMmkOJS42E4Rf0-qsGZ1N_fcGR1CrhktGGXqti8wftuCU84LxlTF6QlZsEqLXOlanJIFrUudS6blObmIsaeUaUr1gmzWfusg346uxTYbcAx2N0X69uEj63zI9gFbB8kN2ywmxF0OfoCACTM3JAydBTcRDb7bg_MhXpKzzu4iXv3lkrw9PryunvP15ulldb_OQWie8rKSEqRlQgkOFbR1C7xkmjdVCVRiYxtdgRUSOTILsmk6YKxmUlVWdqWiYklu5t198F8jxmR6P4ZhOmm40kJoxaWcWnxuQfAxBuzMPrhPG34Mo-YozvTmKM4cxZlZ3ATdzRBO_x8cBhPB4QCTh4CQTOvdf_gvL4t3YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673376244</pqid></control><display><type>article</type><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</creator><creatorcontrib>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</creatorcontrib><description>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction.
The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116820</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Artificial neural networks ; Bond stress ; Bonding strength ; Composite materials ; Compressive properties ; Compressive strength ; Deep learning ; Incomplete data ; Interfacial properties ; Logic ; Logic-guided neural network ; Machine learning ; Neural networks ; Slip ; Steel ; Support vector machines ; Unstructured data</subject><ispartof>Expert systems with applications, 2022-07, Vol.198, p.116820, Article 116820</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</citedby><cites>FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2022.116820$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Mahjoubi, Soroush</creatorcontrib><creatorcontrib>Meng, Weina</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><title>Expert systems with applications</title><description>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction.
The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</description><subject>Artificial neural networks</subject><subject>Bond stress</subject><subject>Bonding strength</subject><subject>Composite materials</subject><subject>Compressive properties</subject><subject>Compressive strength</subject><subject>Deep learning</subject><subject>Incomplete data</subject><subject>Interfacial properties</subject><subject>Logic</subject><subject>Logic-guided neural network</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Slip</subject><subject>Steel</subject><subject>Support vector machines</subject><subject>Unstructured data</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisU7wK3YisUEVL6lSN7C2nMmkOJS42E4Rf0-qsGZ1N_fcGR1CrhktGGXqti8wftuCU84LxlTF6QlZsEqLXOlanJIFrUudS6blObmIsaeUaUr1gmzWfusg346uxTYbcAx2N0X69uEj63zI9gFbB8kN2ywmxF0OfoCACTM3JAydBTcRDb7bg_MhXpKzzu4iXv3lkrw9PryunvP15ulldb_OQWie8rKSEqRlQgkOFbR1C7xkmjdVCVRiYxtdgRUSOTILsmk6YKxmUlVWdqWiYklu5t198F8jxmR6P4ZhOmm40kJoxaWcWnxuQfAxBuzMPrhPG34Mo-YozvTmKM4cxZlZ3ATdzRBO_x8cBhPB4QCTh4CQTOvdf_gvL4t3YA</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Mahjoubi, Soroush</creator><creator>Meng, Weina</creator><creator>Bao, Yi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220715</creationdate><title>Logic-guided neural network for predicting steel-concrete interfacial behaviors</title><author>Mahjoubi, Soroush ; Meng, Weina ; Bao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5844c4a13632c8cd9dc25172b85c04ebab78ca34e2e1ac4bbfc1191468a4f5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bond stress</topic><topic>Bonding strength</topic><topic>Composite materials</topic><topic>Compressive properties</topic><topic>Compressive strength</topic><topic>Deep learning</topic><topic>Incomplete data</topic><topic>Interfacial properties</topic><topic>Logic</topic><topic>Logic-guided neural network</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Slip</topic><topic>Steel</topic><topic>Support vector machines</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahjoubi, Soroush</creatorcontrib><creatorcontrib>Meng, Weina</creatorcontrib><creatorcontrib>Bao, Yi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahjoubi, Soroush</au><au>Meng, Weina</au><au>Bao, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logic-guided neural network for predicting steel-concrete interfacial behaviors</atitle><jtitle>Expert systems with applications</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>198</volume><spage>116820</spage><pages>116820-</pages><artnum>116820</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A logic-guided neural network is presented to predict steel-concrete interfacial behaviors.•Logic and scientific principles are utilized in the logic-guided neural network.•Strategies are presented to utilize unstructured data and datasets with incomplete data.•The bond stress-slip curves of steel-concrete interface are predicted.•The logic-guided neural network achieves a desired performance of prediction.
The interfacial behaviors play significant roles in various composite materials and structures. This paper presents a logic-guided neural network to seamlessly integrate data-driven methods and scientific knowledge in predicting interfacial properties of steel-concrete composites. The investigated properties include the bond strength, interface slip, and bond-slip relationship. Three methods are proposed to conform to logic and scientific principles: (1) logic data are generated to supplement experimental data; (2) a logic loss function is presented to guide the learning process; and (3) unstructured data and incomplete data are utilized to enlarge the dataset. The performance of the presented method is compared with four representative machine learning methods, which are artificial neural network, tree boosting, random forest, and epsilon-support vector regression. The results indicated that the proposed method achieved the highest accuracy. The coefficients of determination of the bond stress and compressive strength are higher than 0.95, and the predicted bond-slip behaviors conform to prior knowledge. The proposed method is useful for prediction of properties for composite materials and structures.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116820</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2022-07, Vol.198, p.116820, Article 116820 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2673376244 |
source | Access via ScienceDirect (Elsevier) |
subjects | Artificial neural networks Bond stress Bonding strength Composite materials Compressive properties Compressive strength Deep learning Incomplete data Interfacial properties Logic Logic-guided neural network Machine learning Neural networks Slip Steel Support vector machines Unstructured data |
title | Logic-guided neural network for predicting steel-concrete interfacial behaviors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logic-guided%20neural%20network%20for%20predicting%20steel-concrete%20interfacial%20behaviors&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Mahjoubi,%20Soroush&rft.date=2022-07-15&rft.volume=198&rft.spage=116820&rft.pages=116820-&rft.artnum=116820&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116820&rft_dat=%3Cproquest_cross%3E2673376244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673376244&rft_id=info:pmid/&rft_els_id=S0957417422002767&rfr_iscdi=true |