AENAR: An aspect-aware explainable neural attentional recommender model for rating predication

Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2022-07, Vol.198, p.116717, Article 116717
Hauptverfasser: Zhang, Tianwei, Sun, Chuanhou, Cheng, Zhiyong, Dong, Xiangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116717
container_title Expert systems with applications
container_volume 198
creator Zhang, Tianwei
Sun, Chuanhou
Cheng, Zhiyong
Dong, Xiangjun
description Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction. •Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.
doi_str_mv 10.1016/j.eswa.2022.116717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673376178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422001920</els_id><sourcerecordid>2673376178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA69Zc2qQVN2UYLzAoiG4NaXJGUnoz6Tj69maoa1fnLL7_XD6ELilJKaHiukkh7HXKCGMppUJSeYQWtJA8EbLkx2hBylwmGZXZKToLoSGESkLkAr1X66fq5QZXPdZhBDMleq89YPgeW-16XbeAe9h53WI9TdBPbuhj78EMXQe9BY-7wUKLt4PHXk-u_8CjB-uMPqDn6GSr2wAXf3WJ3u7Wr6uHZPN8_7iqNolhGY87uahtUXNeMm1JbqDU3EhObW6KgtU1y4zIGbEmMoZKU7CC5KAZ1FqIghq-RFfz3NEPnzsIk2qGnY-XBsWE5FwKKotIsZkyfgjBw1aN3nXa_yhK1MGjatTBozp4VLPHGLqdQxDv_3LgVTAOehN_jBYmZQf3X_wXjKh8Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673376178</pqid></control><display><type>article</type><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</creator><creatorcontrib>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</creatorcontrib><description>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction. •Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116717</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attention mechanism ; Deep learning ; Neural networks ; Recommender systems</subject><ispartof>Expert systems with applications, 2022-07, Vol.198, p.116717, Article 116717</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</citedby><cites>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</cites><orcidid>0000-0002-8005-2702 ; 0000-0002-6795-797X ; 0000-0003-1109-5028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417422001920$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Tianwei</creatorcontrib><creatorcontrib>Sun, Chuanhou</creatorcontrib><creatorcontrib>Cheng, Zhiyong</creatorcontrib><creatorcontrib>Dong, Xiangjun</creatorcontrib><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><title>Expert systems with applications</title><description>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction. •Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</description><subject>Attention mechanism</subject><subject>Deep learning</subject><subject>Neural networks</subject><subject>Recommender systems</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA69Zc2qQVN2UYLzAoiG4NaXJGUnoz6Tj69maoa1fnLL7_XD6ELilJKaHiukkh7HXKCGMppUJSeYQWtJA8EbLkx2hBylwmGZXZKToLoSGESkLkAr1X66fq5QZXPdZhBDMleq89YPgeW-16XbeAe9h53WI9TdBPbuhj78EMXQe9BY-7wUKLt4PHXk-u_8CjB-uMPqDn6GSr2wAXf3WJ3u7Wr6uHZPN8_7iqNolhGY87uahtUXNeMm1JbqDU3EhObW6KgtU1y4zIGbEmMoZKU7CC5KAZ1FqIghq-RFfz3NEPnzsIk2qGnY-XBsWE5FwKKotIsZkyfgjBw1aN3nXa_yhK1MGjatTBozp4VLPHGLqdQxDv_3LgVTAOehN_jBYmZQf3X_wXjKh8Xw</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Zhang, Tianwei</creator><creator>Sun, Chuanhou</creator><creator>Cheng, Zhiyong</creator><creator>Dong, Xiangjun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8005-2702</orcidid><orcidid>https://orcid.org/0000-0002-6795-797X</orcidid><orcidid>https://orcid.org/0000-0003-1109-5028</orcidid></search><sort><creationdate>20220715</creationdate><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><author>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Deep learning</topic><topic>Neural networks</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianwei</creatorcontrib><creatorcontrib>Sun, Chuanhou</creatorcontrib><creatorcontrib>Cheng, Zhiyong</creatorcontrib><creatorcontrib>Dong, Xiangjun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianwei</au><au>Sun, Chuanhou</au><au>Cheng, Zhiyong</au><au>Dong, Xiangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</atitle><jtitle>Expert systems with applications</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>198</volume><spage>116717</spage><pages>116717-</pages><artnum>116717</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction. •Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116717</doi><orcidid>https://orcid.org/0000-0002-8005-2702</orcidid><orcidid>https://orcid.org/0000-0002-6795-797X</orcidid><orcidid>https://orcid.org/0000-0003-1109-5028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-07, Vol.198, p.116717, Article 116717
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2673376178
source Elsevier ScienceDirect Journals
subjects Attention mechanism
Deep learning
Neural networks
Recommender systems
title AENAR: An aspect-aware explainable neural attentional recommender model for rating predication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AENAR:%20An%20aspect-aware%20explainable%20neural%20attentional%20recommender%20model%20for%20rating%20predication&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zhang,%20Tianwei&rft.date=2022-07-15&rft.volume=198&rft.spage=116717&rft.pages=116717-&rft.artnum=116717&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116717&rft_dat=%3Cproquest_cross%3E2673376178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673376178&rft_id=info:pmid/&rft_els_id=S0957417422001920&rfr_iscdi=true