AENAR: An aspect-aware explainable neural attentional recommender model for rating predication
Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aw...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2022-07, Vol.198, p.116717, Article 116717 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116717 |
container_title | Expert systems with applications |
container_volume | 198 |
creator | Zhang, Tianwei Sun, Chuanhou Cheng, Zhiyong Dong, Xiangjun |
description | Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction.
•Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism. |
doi_str_mv | 10.1016/j.eswa.2022.116717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673376178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422001920</els_id><sourcerecordid>2673376178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuA69Zc2qQVN2UYLzAoiG4NaXJGUnoz6Tj69maoa1fnLL7_XD6ELilJKaHiukkh7HXKCGMppUJSeYQWtJA8EbLkx2hBylwmGZXZKToLoSGESkLkAr1X66fq5QZXPdZhBDMleq89YPgeW-16XbeAe9h53WI9TdBPbuhj78EMXQe9BY-7wUKLt4PHXk-u_8CjB-uMPqDn6GSr2wAXf3WJ3u7Wr6uHZPN8_7iqNolhGY87uahtUXNeMm1JbqDU3EhObW6KgtU1y4zIGbEmMoZKU7CC5KAZ1FqIghq-RFfz3NEPnzsIk2qGnY-XBsWE5FwKKotIsZkyfgjBw1aN3nXa_yhK1MGjatTBozp4VLPHGLqdQxDv_3LgVTAOehN_jBYmZQf3X_wXjKh8Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673376178</pqid></control><display><type>article</type><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</creator><creatorcontrib>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</creatorcontrib><description>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction.
•Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.116717</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Attention mechanism ; Deep learning ; Neural networks ; Recommender systems</subject><ispartof>Expert systems with applications, 2022-07, Vol.198, p.116717, Article 116717</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</citedby><cites>FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</cites><orcidid>0000-0002-8005-2702 ; 0000-0002-6795-797X ; 0000-0003-1109-5028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417422001920$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhang, Tianwei</creatorcontrib><creatorcontrib>Sun, Chuanhou</creatorcontrib><creatorcontrib>Cheng, Zhiyong</creatorcontrib><creatorcontrib>Dong, Xiangjun</creatorcontrib><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><title>Expert systems with applications</title><description>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction.
•Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</description><subject>Attention mechanism</subject><subject>Deep learning</subject><subject>Neural networks</subject><subject>Recommender systems</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuA69Zc2qQVN2UYLzAoiG4NaXJGUnoz6Tj69maoa1fnLL7_XD6ELilJKaHiukkh7HXKCGMppUJSeYQWtJA8EbLkx2hBylwmGZXZKToLoSGESkLkAr1X66fq5QZXPdZhBDMleq89YPgeW-16XbeAe9h53WI9TdBPbuhj78EMXQe9BY-7wUKLt4PHXk-u_8CjB-uMPqDn6GSr2wAXf3WJ3u7Wr6uHZPN8_7iqNolhGY87uahtUXNeMm1JbqDU3EhObW6KgtU1y4zIGbEmMoZKU7CC5KAZ1FqIghq-RFfz3NEPnzsIk2qGnY-XBsWE5FwKKotIsZkyfgjBw1aN3nXa_yhK1MGjatTBozp4VLPHGLqdQxDv_3LgVTAOehN_jBYmZQf3X_wXjKh8Xw</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Zhang, Tianwei</creator><creator>Sun, Chuanhou</creator><creator>Cheng, Zhiyong</creator><creator>Dong, Xiangjun</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8005-2702</orcidid><orcidid>https://orcid.org/0000-0002-6795-797X</orcidid><orcidid>https://orcid.org/0000-0003-1109-5028</orcidid></search><sort><creationdate>20220715</creationdate><title>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</title><author>Zhang, Tianwei ; Sun, Chuanhou ; Cheng, Zhiyong ; Dong, Xiangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c243t-a36bd8b3392ad05ce9a3c731d5c882bb24c6520dc8b3c17c82805ea2eba6681c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attention mechanism</topic><topic>Deep learning</topic><topic>Neural networks</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tianwei</creatorcontrib><creatorcontrib>Sun, Chuanhou</creatorcontrib><creatorcontrib>Cheng, Zhiyong</creatorcontrib><creatorcontrib>Dong, Xiangjun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tianwei</au><au>Sun, Chuanhou</au><au>Cheng, Zhiyong</au><au>Dong, Xiangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AENAR: An aspect-aware explainable neural attentional recommender model for rating predication</atitle><jtitle>Expert systems with applications</jtitle><date>2022-07-15</date><risdate>2022</risdate><volume>198</volume><spage>116717</spage><pages>116717-</pages><artnum>116717</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>Explainable rating predication becomes challenging with the largely growing number of information and items. Of particular interest is to capture users’ preferences for various items by using textual reviews to achieve accurate and interpretable recommendations. In this paper, we report an aspect-aware explainable neural attentional recommender model for rating predication (AENAR) and this model enables intelligent predication and recommendation by capturing the varying aspect attentions that users pay to different items. The experimental results based on six public datasets reveals that the designed model consistently outperforms five existing state-of-the-art alternatives. Furthermore, the designed attention network allows to highlight the context-aware information in textual reviews that unambiguously suggest users’ aspect-level preference for their desired items, improving the interpretability of the rating prediction.
•Applied CNN to extract fine-grained textual feature information.•An attention mechanism designed for capturing the diverse user preferences.•Explainable model that can trace back to keywords in review via attention mechanism.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.116717</doi><orcidid>https://orcid.org/0000-0002-8005-2702</orcidid><orcidid>https://orcid.org/0000-0002-6795-797X</orcidid><orcidid>https://orcid.org/0000-0003-1109-5028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2022-07, Vol.198, p.116717, Article 116717 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2673376178 |
source | Elsevier ScienceDirect Journals |
subjects | Attention mechanism Deep learning Neural networks Recommender systems |
title | AENAR: An aspect-aware explainable neural attentional recommender model for rating predication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AENAR:%20An%20aspect-aware%20explainable%20neural%20attentional%20recommender%20model%20for%20rating%20predication&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zhang,%20Tianwei&rft.date=2022-07-15&rft.volume=198&rft.spage=116717&rft.pages=116717-&rft.artnum=116717&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.116717&rft_dat=%3Cproquest_cross%3E2673376178%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673376178&rft_id=info:pmid/&rft_els_id=S0957417422001920&rfr_iscdi=true |