Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle

•A deep learning-based data-driven operational fault diagnosis model is proposed.•The model utilizing multisensory data fusion is applied to ATV use-case.•A new ATV testbed and dataset collected via multiple sensors are presented.•The results obtained from single, dual and multiple sensor models are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2022-08, Vol.200, p.117055, Article 117055
Hauptverfasser: Gültekin, Özgür, Cinar, Eyup, Özkan, Kemal, Yazıcı, Ahmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117055
container_title Expert systems with applications
container_volume 200
creator Gültekin, Özgür
Cinar, Eyup
Özkan, Kemal
Yazıcı, Ahmet
description •A deep learning-based data-driven operational fault diagnosis model is proposed.•The model utilizing multisensory data fusion is applied to ATV use-case.•A new ATV testbed and dataset collected via multiple sensors are presented.•The results obtained from single, dual and multiple sensor models are compared. The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.
doi_str_mv 10.1016/j.eswa.2022.117055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2673376172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417422004699</els_id><sourcerecordid>2673376172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-6db5ff3ad07a68dbfa1b9eccf8ecb37a38759839c2aed8586f7abd3ccc39c7ab3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AU8Bz12TxjYteBHxCxQveg7TZKJZarJm2hX_vVnWs6cZhveZGR7GzqRYSiHbi9US6RuWtajrpZRaNM0eW8hOq6rVvdpnC9E3urqU-vKQHRGthCghoRds8zyPUyCMlPIPdzAB9zOFFKsBCB13iGs-IuQY4juH9TonsB_cp8w9FJS7AO8xUSCePIfIQ3QzTTnAyGGeUkyfaSY-ZYjkMfMNfgQ74gk78DASnv7VY_Z2d_t681A9vdw_3lw_VbZuuqlq3dB4r8AJDW3nBg9y6NFa36EdlAbV6abvVG9rQNc1Xes1DE5Za8ustOqYne_2lr-_ZqTJrNKcYzlp6lYrpVup65KqdymbE1FGb9Y5fEL-MVKYrV-zMlu_ZuvX7PwW6GoHYfl_EzAbsgGjRRcy2sm4FP7DfwF7mYgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673376172</pqid></control><display><type>article</type><title>Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gültekin, Özgür ; Cinar, Eyup ; Özkan, Kemal ; Yazıcı, Ahmet</creator><creatorcontrib>Gültekin, Özgür ; Cinar, Eyup ; Özkan, Kemal ; Yazıcı, Ahmet</creatorcontrib><description>•A deep learning-based data-driven operational fault diagnosis model is proposed.•The model utilizing multisensory data fusion is applied to ATV use-case.•A new ATV testbed and dataset collected via multiple sensors are presented.•The results obtained from single, dual and multiple sensor models are compared. The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2022.117055</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>All terrain vehicles ; Anomalies ; Artificial neural networks ; Autonomous Transfer Vehicle ; Condition Monitoring ; Data integration ; Deep Learning ; Fault detection ; Fault diagnosis ; Faults ; Fourier transforms ; Manufacturing ; Multisensor fusion ; New technology ; Sensor Fusion ; Sensors ; Short Time Fourier Transform</subject><ispartof>Expert systems with applications, 2022-08, Vol.200, p.117055, Article 117055</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-6db5ff3ad07a68dbfa1b9eccf8ecb37a38759839c2aed8586f7abd3ccc39c7ab3</citedby><cites>FETCH-LOGICAL-c258t-6db5ff3ad07a68dbfa1b9eccf8ecb37a38759839c2aed8586f7abd3ccc39c7ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2022.117055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Gültekin, Özgür</creatorcontrib><creatorcontrib>Cinar, Eyup</creatorcontrib><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Yazıcı, Ahmet</creatorcontrib><title>Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle</title><title>Expert systems with applications</title><description>•A deep learning-based data-driven operational fault diagnosis model is proposed.•The model utilizing multisensory data fusion is applied to ATV use-case.•A new ATV testbed and dataset collected via multiple sensors are presented.•The results obtained from single, dual and multiple sensor models are compared. The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.</description><subject>All terrain vehicles</subject><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Autonomous Transfer Vehicle</subject><subject>Condition Monitoring</subject><subject>Data integration</subject><subject>Deep Learning</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Faults</subject><subject>Fourier transforms</subject><subject>Manufacturing</subject><subject>Multisensor fusion</subject><subject>New technology</subject><subject>Sensor Fusion</subject><subject>Sensors</subject><subject>Short Time Fourier Transform</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AU8Bz12TxjYteBHxCxQveg7TZKJZarJm2hX_vVnWs6cZhveZGR7GzqRYSiHbi9US6RuWtajrpZRaNM0eW8hOq6rVvdpnC9E3urqU-vKQHRGthCghoRds8zyPUyCMlPIPdzAB9zOFFKsBCB13iGs-IuQY4juH9TonsB_cp8w9FJS7AO8xUSCePIfIQ3QzTTnAyGGeUkyfaSY-ZYjkMfMNfgQ74gk78DASnv7VY_Z2d_t681A9vdw_3lw_VbZuuqlq3dB4r8AJDW3nBg9y6NFa36EdlAbV6abvVG9rQNc1Xes1DE5Za8ustOqYne_2lr-_ZqTJrNKcYzlp6lYrpVup65KqdymbE1FGb9Y5fEL-MVKYrV-zMlu_ZuvX7PwW6GoHYfl_EzAbsgGjRRcy2sm4FP7DfwF7mYgx</recordid><startdate>20220815</startdate><enddate>20220815</enddate><creator>Gültekin, Özgür</creator><creator>Cinar, Eyup</creator><creator>Özkan, Kemal</creator><creator>Yazıcı, Ahmet</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220815</creationdate><title>Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle</title><author>Gültekin, Özgür ; Cinar, Eyup ; Özkan, Kemal ; Yazıcı, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-6db5ff3ad07a68dbfa1b9eccf8ecb37a38759839c2aed8586f7abd3ccc39c7ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>All terrain vehicles</topic><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Autonomous Transfer Vehicle</topic><topic>Condition Monitoring</topic><topic>Data integration</topic><topic>Deep Learning</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Faults</topic><topic>Fourier transforms</topic><topic>Manufacturing</topic><topic>Multisensor fusion</topic><topic>New technology</topic><topic>Sensor Fusion</topic><topic>Sensors</topic><topic>Short Time Fourier Transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gültekin, Özgür</creatorcontrib><creatorcontrib>Cinar, Eyup</creatorcontrib><creatorcontrib>Özkan, Kemal</creatorcontrib><creatorcontrib>Yazıcı, Ahmet</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gültekin, Özgür</au><au>Cinar, Eyup</au><au>Özkan, Kemal</au><au>Yazıcı, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle</atitle><jtitle>Expert systems with applications</jtitle><date>2022-08-15</date><risdate>2022</risdate><volume>200</volume><spage>117055</spage><pages>117055-</pages><artnum>117055</artnum><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A deep learning-based data-driven operational fault diagnosis model is proposed.•The model utilizing multisensory data fusion is applied to ATV use-case.•A new ATV testbed and dataset collected via multiple sensors are presented.•The results obtained from single, dual and multiple sensor models are compared. The integration of Industry 4.0 concepts into today’s manufacturing settings has introduced new technology tools that have already started providing companies an increased level of efficiency in certain operations. Autonomous Transfer Vehicles (ATV) are one of these new tools that are popular in today’s manufacturing settings. As these tools become an integral part of the manufacturing ecosystem, accurate diagnosis of ATV faults and anomalies will also be crucial in manufacturing settings. Similar to any other intelligent detection of machinery faults, analyzing and utilizing signals measured from attached ATV sensors may reveal any uncovered operational faults or critical operational/safety concerns. In this context, this paper focuses on an intelligent fault detection of an ATV tool utilizing signals measured from multiple attached sensors. A novel Convolutional Neural Network-based data fusion approach, utilizing short time Fourier Transform, is proposed for the detection and identification of operational faults occurring in an ATV. The approach is tested on an experimental dataset, consisting of two motors’ sound and vibration signals, collected as an ATV operates for a specific task under three different conditions. The diagnosis results indicate that the proposed deep learning-based multisensory fault diagnosis approach is able to diagnose operational conditions with significantly high accuracy compared to single or dual sensor approaches.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2022.117055</doi></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2022-08, Vol.200, p.117055, Article 117055
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2673376172
source Access via ScienceDirect (Elsevier)
subjects All terrain vehicles
Anomalies
Artificial neural networks
Autonomous Transfer Vehicle
Condition Monitoring
Data integration
Deep Learning
Fault detection
Fault diagnosis
Faults
Fourier transforms
Manufacturing
Multisensor fusion
New technology
Sensor Fusion
Sensors
Short Time Fourier Transform
title Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisensory%20data%20fusion-based%20deep%20learning%20approach%20for%20fault%20diagnosis%20of%20an%20industrial%20autonomous%20transfer%20vehicle&rft.jtitle=Expert%20systems%20with%20applications&rft.au=G%C3%BCltekin,%20%C3%96zg%C3%BCr&rft.date=2022-08-15&rft.volume=200&rft.spage=117055&rft.pages=117055-&rft.artnum=117055&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2022.117055&rft_dat=%3Cproquest_cross%3E2673376172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673376172&rft_id=info:pmid/&rft_els_id=S0957417422004699&rfr_iscdi=true